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The relative importance of selection and drift in driving species 
diversification has been a matter of debate since the origins of 
evolutionary biology. In the earliest formulations of evolution-

ary theory, natural selection was proposed to be the predominant 
driver of differences among species1,2. Subsequent theorists argued 
that random genetic drift could be a more important contributor 
to species differences3–6, with random changes accumulating over 
evolutionary time due to reproductive isolation between popula-
tions. Although it is now clear that natural selection plays a substan-
tial role in both diversification and constraint in many species7–10, 
considerable uncertainty remains regarding the relative importance 
of stochastic drift, mutation, selection and linkage, with no clear 
consensus among evolutionary geneticists11–14. A better mechanistic 
understanding of these processes and how they jointly shape genetic 
diversity could help to resolve old evolutionary puzzles, such as the 
narrow range of observed genetic diversity across species15 and the 
apparently low rate of adaptation in primates16.

With the exception of rapidly evolving microbial species, most 
adaptation events occur too slowly for direct observation over the 
time-scale of a scientific study. Therefore, detailed study of the molecu-
lar basis of adaptation has required the development of computational 
methods to infer adaptation rates (denoted by α, defined as the pro-
portion of fixed differences between species that confer fitness ben-
efits) directly from genetic sequence data. Most existing approaches 
derive from the McDonald–Kreitman (MK) test7,17 and related Poisson 
random field framework18, both of which use divergence and poly-
morphism data to infer adaptation rates. Note that a recent approach 
uses polymorphism data alone to infer the distribution of fitness 
effects (DFE) of fixing mutations19. The critical idea behind each of 
these methods is to compare evidence for differentiation at alleles that 
are likely to have fitness effects (for example, non-synonymous alleles 
that change protein function by altering the amino acid sequence) to 
alleles that are less likely to have fitness effects (for example, synony-
mous alleles that do not change amino acid sequences).

In the classic MK framework, the rate of divergence at putatively 
functional sites (DN, often defined as non-synonymous differences 

within proteins) is compared to putatively neutral diverged sites 
(DS, often defined as synonymous differences). Polymorphic sites 
within both the functional and non-functional classes (PN and PS, 
respectively) are used as a background to calibrate the expected rate 
of divergence under a neutral model. If mutations at functional sites 
are assumed to be either virtually lethal or neutral, then the ratio D
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interpreted as evidence of adaptation because sites with functional 
effects on proteins are over-represented among the fixed differences 
relative to the neutral expectation. A simple equation was developed 
that uses the same logic as the MK test to estimate adaptation rate α:

α ≈ −
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and this approach was used to provide evidence for a high rate of 
adaptation in Drosophila17. In principle, non-adaptive processes 
(that is, processes that do not increase fitness) such as guanine and 
cytosine (GC)-biased gene conversion20 could also lead to an excess 
of non-synonymous fixed differences between species, but only if 
these processes differentially affect synonymous and non-synoy-
mous mutations.

Unfortunately, this elegant framework is susceptible to many 
biases, most notably driven by the presence of weakly deleterious 
polymorphism in the class PN. Deleterious polymorphism effectively 
makes the test overly conservative, because deleterious alleles are 
unlikely ever to reach fixation and therefore lead to overestimation 
of the expected background rate of substitutions in the functional 
class. The idea was proposed to include only common polymor-
phic alleles (for example, alleles at frequency 15% or greater), which 
should remove many deleterious alleles21; however, this approach 
has been shown to provide conservative adaptation rate estimates 
in many contexts22. More recently, it was shown that even removal 
of all polymorphism <50% is insufficient to correct this bias,  
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especially when slightly deleterious mutations are common and the 
rate of adaptive evolution is high23. To mitigate this effect, an asymp-
totic implementation of the MK test, called aMK, was introduced. In 
this implementation, P

P
N

S
 in equation (1) is replaced by P x

P x
( )
( )

N

S
, where 

PN(x) and PS(x) are the number of segregating non-synonymous and 
synonymous alleles at frequency x, respectively23. An exponential 
curve is fit to the resulting α(x) function, which can be calculated 
for all values of x in the interval (0,1) for a sample of sequenced 
chromosomes. The intercept of the best-fit exponential curve at 
x = 1 is a good approximation for α, as this effectively removes all 
slightly deleterious polymorphism at all frequencies. This approach 
was shown to be robust to both the underlying distribution of del-
eterious effects and recent demographic events23. The aMK test has 
inspired new approaches to inferring adaptation in mitochondrial 
genes24 and revealed a high rate of adaptation in proteins interacting 
with pathogens25.

While aMK extends the elegant MK framework for estimation 
of adaptation rate, it does not explicitly account for the possibility 
that beneficial alleles contribute to segregating polymorphism. It is 
unknown whether aMK is robust to the presence of weakly benefi-
cial alleles, but there is reason to believe that beneficial alleles would 
be problematic because these are preferentially found at very high 
frequencies19, and thus their effect would not be eliminated by the 
asymptotic procedure. The recent emphasis on adaptation from 
standing variation26–30, and the reported evidence for weakly benefi-
cial polymorphism in Drosophila31, suggest that robust methods for 
inferring adaptation strength over longer evolutionary time-scales 
are needed.

A key limitation of existing MK-based approaches is that they 
provide estimates of adaptation rate but not adaptation strength, and 
therefore it is not clear whether weakly beneficial mutations contrib-
ute substantially to the fixation process. The underlying processes 
driving weak and strong adaptation might differ, and the ability to 
separately estimate rates of weak and strong adaptation could pro-
vide insight into the biological drivers of adaptation. We hypoth-
esized that such a method could be developed by exploiting the 
impact of background selection (BGS) on the fixation rate of weakly 
beneficial alleles. BGS removes neutral and weakly beneficial varia-
tion via linkage to deleterious loci32, while the fixation rate of strongly 
adaptive alleles is not substantially affected33. Given that the strength 
of BGS varies widely and predictably across the human genome34, a 
method that interrogates the rate of adaptation as a function of BGS 
might be able jointly to infer the rate and strength of adaptation.

Here, we probe the performance of aMK when weakly beneficial 
alleles substantially contribute to segregating polymorphism, and we 
show that aMK underestimates α in this adaptation regime. We addi-
tionally show that when adaptation is weak, true α is predicted to 

vary substantially across the genome as a function of the strength of 
BGS. We exploit this signal of co-variation between α and BGS in the 
weak-adaptation regime to develop an approximate Bayesian compu-
tation (ABC) method, which we call ABC-MK, that separately infers 
the rate of adaptation for both weakly and strongly beneficial alleles. 
Both our approach and aMK rely on similar input data, but we use 
a model-based fitting procedure that directly accounts for BGS and 
weakly beneficial alleles. We apply our method to human genetic data 
to provide evidence that adaptation in humans is primarily weakly 
beneficial and varies as a function of BGS strength. Interestingly, 
adaptation rate estimates on virus-interacting proteins (VIPs) sup-
port a much higher rate of strong adaptation, suggesting that adapta-
tion to viruses is both frequent and strongly fitness-increasing. We 
address seven potential sources of confounding, and discuss our 
results in light of recent research on adaptation in humans.

results
Estimates of α are conservative for weakly beneficial selection. 
The aMK approach is known to converge to the true α at high fre-
quency under the assumption that positively selected mutations 
make negligible contributions to the frequency spectrum23. This 
assumption is likely to be met when beneficial alleles confer large 
fitness benefits, because selective sweeps occur rapidly and ben-
eficial alleles are rarely observed as polymorphic. However, when 
selection is predominantly weak, attaining a substantial α requires 
much higher mutation rates for beneficial alleles and longer aver-
age transit time to fixation, introducing the possibility that weakly 
beneficial alleles will contribute non-negligibly to the frequency 
spectrum.

To test whether aMK is sensitive to polymorphic weakly adap-
tive alleles, we used simulated polymorphism and divergence data 
to estimate the rate of adaptation using published aMK software35. 
In our simulations, we set the true value of α to 0.2 and varied the 
contribution of weakly and strongly beneficial alleles to the adap-
tation process (see Methods and Supplementary Information). 
When adaptation was due entirely to strongly adaptive alleles, the 
estimated value of α (α ̂) was close to the true value but slightly con-
servative (α ̂ = . ± .0 181 0 01; Fig. 1a). As we increased the contribu-
tion of weakly beneficial alleles (αW) to α, estimates of α became 
increasingly conservative (α ̂ = . ± .0 144 0 01 when αW = 0.1, and 
α ̂ = . ± .0 122 0 015 when αW = 0.2; Fig. 1b,c). Removing polymor-
phism of frequency >0.5 has been suggested as an approach to 
account for potential biases induced by high-frequency-derived 
alleles, which could be mis-polarized in real datasets25. Restriction 
to alleles of frequency <0.5 produced similar (but conservative) 
estimates for all three models (α ̂ = . .0 14271, 0 14529 and 0.14264 for 
αW = 0.0, 0.1 and 0.2, respectively), probably because the frequency 
spectrum is not strongly dependent on the rate of weakly beneficial 

–0.2

–0.1

0.0

0.1

0.2

1 2 5 10 20 50

Allele count (x)

α(
x)

αW = 0a

–0.2

–0.1

0.0

0.1

0.2

1 2 5 10 20 50

Allele count (x)

α(
x)

αW = 0.1b

−0.2

−0.1

0.0

0.1

0.2

1 2 5 10 20 50

Allele count (x)

α(
x) All alleles

Neutral +
deleterious

αW = 0.2c

Fig. 1 | aMK estimates as a function of adaptation strength. a–c, We plot α(x) as a function of derived allele count (x) in a sample of 50 chromosomes. The 
true value of α = 0.2 in each panel, with varying contributions from weakly (2Ns = 10) and strongly adaptive alleles (2Ns = 500), where N is the population 
size and s is the selection coefficient. The solid lines show the results of our analytical approximation (equation (11) in Supplementary Information), while the 
points show the value of α(x) from forward simulations. The blue points and curves show the calculation as applied to all polymorphic loci, while in the pink 
points and curves we have removed positively selected alleles from the calculation. The dotted line shows the estimated value of α from the simulated data 
using existing asymptotic-MK methods24,47, while the grey bars show the 95% confidence interval around the estimate.
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mutation for low-frequency alleles. Lastly, we performed a much 
larger parameter sweep across α values and selection coefficients. 
We found that α estimates became increasingly conservative as 
the proportion of weakly deleterious alleles increased, and as the 
strength of selection at beneficial alleles decreased (Supplementary 
Fig. 12a and Supplementary Information). Asymptotic-MK esti-
mates of α are only weakly dependent on the distribution of delete-
rious selection coefficients (Supplementary Fig. 12).

To better understand why parameter estimates decreased as the 
proportion of weakly adaptive alleles increased, we performed ana-
lytical calculations of α(x) using diffusion theory36,37. Since we use 
large sample sizes in our analysis herein, we replace the terms PN(x) 
and PS(x) in α(x) with ∑ P x( )x N  and ∑ P x( )x S  in our calculations, 
which trivially asymptote to the same values as the original formula-
tion but are not strongly affected by sample size (see Supplementary 
Information). We find that the downward bias in estimates of α is 
due to segregation of weakly adaptive alleles, and removal of these 
alleles from the simulated and calculated α(x) curves restored the 
convergence of α(x) to the true α at high frequency (Fig. 1a–c, red 
curves). In real data, it is not possible to perfectly partition posi-
tively selected and deleterious polymorphic alleles. Hence, in later 
sections we focus on using the shape of the α(x) curve to infer the 
strength and rate of adaptation under models that include linkage 
and complex demography.

Background selection reduces true α when adaptation is weak. 
We have shown that weakly beneficial alleles may impact aMK anal-
yses by contributing to segregation of polymorphism. This presents 
an opportunity to study whether aMK estimates vary as a function 
of BGS strength. BGS, the action of linkage between deleterious 
alleles and neutral alleles, reduces genetic diversity in the human 
genome34 and affects neutral divergence rates38, and is predicted to 
decrease the fixation probability of weakly adaptive alleles33. Hence, 
we hypothesized that if adaptation is partially driven by weakly  

beneficial alleles in some species, BGS could play a role in modula-
tion of adaptation rate across the genome.

To better understand how BGS might affect aMK inference in 
the presence of weakly beneficial alleles, we performed analytical 
calculations and simulations of α(x) with various levels of BGS. We 
set α = 0.2 in the absence of BGS, and then performed simulations 
while fixing the rate of adaptive mutations and changing the level 
of BGS (ranging from = .π

π
0 4

0
 to 1.0, where π is neutral nucleotide 

diversity as compared to the neutral diversity in the absence of 
linked selection, π0). We find that when adaptation is strong, BGS 
has a modest effect on α(x) and the true value of α (Fig. 2a,c), mostly 
driven by an increase in the rate of fixation of deleterious alleles 
(Supplementary Fig. 2e). When adaptation is weak, BGS removes 
a substantial portion of weakly adaptive alleles and precludes these 
from fixing, resulting in much stronger dependence of α(x) on BGS 
and a substantial reduction in the true value of α (Fig. 2b,d and 
Supplementary Fig. 2c). Similar to the previous section, estimates of 
α were conservative across all models but the underestimation was 
much more pronounced for weak adaptation (Fig. 2c,d).

Human adaptation rate is shaped by linked selection. Our model-
ling results show that α is likely to be underestimated when weakly 
beneficial alleles contribute substantially to the frequency spectrum, 
and that background selection may reduce adaptation rate when fit-
ness benefits of adaptive alleles are small. Since BGS is thought to 
drive broad-scale patterns of diversity across the human genome34, 
we hypothesized that directly accounting for the action of BGS on 
adaptation rate could provide new insights into the evolutionary 
mechanisms driving adaptation. Moreover, the fact that weak adap-
tation is strongly affected by BGS, while strong adaptation is not, 
suggests that strong and weak adaptation could be differentiated in 
genomic data by comparing regions of differing BGS strength (from 

= .π
π

0 2
0

 to =π
π

1
0

). We therefore designed an ABC-based method to 
infer α while accounting for both BGS and weakly beneficial alleles.
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Fig. 2 | the effect of BgS on α. a,b, α(x) is plotted as a function of derived allele count (x) for various background selection (π/π0) values. Adaptive alleles 
are strongly beneficial (2Ns = 500) (a) or are weakly beneficial (2Ns = 10) (b). The lines represent analytical approximations, while the points represent 
the results of stochastic simulations. The dashed lines at α = 0.2 represent the true rate of adaptation in the absence of BGS. c,d, True (dark colours) and 
estimated (light colours) α for each of the corresponding models in a,b, which corresponds to strong adaptation (2Ns = 500) (c) or weak adaptation 
(2Ns = 10) (d). Estimates of α were made using existing asymptotic-MK software24, and the error bars correspond to 95% confidence intervals reported by 
the software. For each parameter combination, we used 2 × 105 independent simulations of 103 coding base pairs each.
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We applied our inference procedure (ABC-MK) to empirical α(x) 
data computed from human genomes obtained from the Thousand 
Genomes Project (TGP) for all 661 samples with African ances-
try39. We find strong posterior support for a substantial component 
of α driven by weakly beneficial alleles (α ̂ = .0 097W ; see Fig. 3a  
and see Table 1 for area of 95% highest posterior density), as well 
as posterior support for a smaller component of α from strongly 
beneficial alleles (αS) (α ̂ = .0 041S ). We estimate that total α ̂ = .0 135,  
nearly twice the estimate obtained with the same dataset using the 
original aMK approach (α ̂ = .0 076, see Supplementary Information; 
we note that while our estimate is similar to previous estimates23,40, 
we used a much larger set of genes in our inference and hence the 
estimates are not directly comparable). In addition to rates of posi-
tive selection, our approach provides estimates of negative selection 
strength. We find support for mean strength of negative selection 
of 2Ns ≈ −220 (Supplementary Fig. 9C), which is consistent with 
recent studies using large sample sizes41 but weaker than earlier esti-
mates using small samples40,42.

In addition to estimation of evolutionary parameters, we sought 
to better understand how BGS might impact adaptation rates across 
the genome. We resampled parameter values from our posterior 
estimates of each parameter, and ran a new set of forward simula-
tions using these parameter values. We then calculated α as a func-
tion of BGS in our simulations. We find that α co-varies strongly 
with BGS, with α in the lowest BGS bins being 33% of α in the high-
est bins (Fig. 3c). Integrating across the whole genome, our results 
suggest that human adaptation rate in coding regions is reduced by 
approximately 25% by BGS (Supplementary Fig. 9d). To confirm 
that these model projections are supported by the underlying data, 
we split the genome into BGS bins and separately estimated adap-
tation rate in each bin. Although these estimates are substantially 

noisier than our inference on the full dataset, we find that the rate 
of adaptation due to weakly beneficial alleles decreases as a func-
tion of BGS strength in accordance with the model predictions  
(Fig. 3d). In contrast, estimates of the mean strength of negative 
selection against non-synoymous mutations did not co-vary with 
BGS strength (Supplementary Fig. 20). Lastly, to validate that our 
model recapitulates α(x) values that we observe in real data, we also 
used our independent forward simulations to re-compute α(x). We 
find that our model is in close agreement with observed data across 
the majority of the frequency spectrum. The model and data deviate 
at high frequency, but both are within sampling uncertainty (Fig. 3b, 
grey envelope).

Previous research has shown that VIPs have undergone faster 
rates of adaptation than the genome background25. However, the 
strength of selection acting on these genes is unknown and, given 
our BGS results, it is plausible that the higher rate of adaptation 
in VIPs is driven by lower overall background selection at VIPs 
rather than increased selection pressure for adaptation. In contrast, 
if pathogens have imposed large fitness costs on humans it is pos-
sible that VIPs would support both higher adaptation rates and 
greater adaptation strength. We ran our method while restricting 
it to an expanded set of 4,066 VIPs for which the divergence and 
polymorphism data were available. We found evidence for strik-
ingly higher adaptation rates in VIPs than the genome background 
(α = 0.224) and a much larger contribution from strongly adaptive 
alleles (αS = 0.126; Fig. 4). The higher value of α for VIPs cannot be 
explained by BGS, because VIPs undergo slightly stronger BGS than 
average genes; the mean BGS strength at VIPs is 0.574 as compared 
to 0.629 for all genes (in units of π/π0). Taking αS = 0.126 as a point 
estimate for the rate of strongly beneficial substitutions in VIPs 
and αS = 0.041 genome-wide, we estimate that 61% of all strongly 
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Fig. 3 | Adaptation rate and strength estimates for human genomic data. a, Posterior distribution of αW, αS and α = αS + αW as inferred by application of our 
ABC approach to 661 samples of African ancestry from TGP phase3. b, α(x) as a function of derived allele frequency (DAF) for genomic data (black points) 
plotted along with the mean posterior estimate from our model (orange line) and 99% confidence interval (grey envelope), as obtained by an independent 
set of simulations using posterior parameter estimates. c, Inferred posterior distribution of α as a function of BGS strength in the human genome. d, Mean 
posterior estimates of αW, as determined by separate fitting of the model to alleles from each independent background selection strength bin. A linear 
model fit to the data (green line) supported statistically significant co-variation between π/π0 and αW (P = 0.0343). The black dashed line shows the 
predicted change in αW as a function of π/π0 given the mean estimate of αW.
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beneficial substitutions occurred in VIPs (Table 1). Moreover, we 
estimate that the posterior probability that α is greater in VIPs than 
non-VIPs is 99.97%, while the posterior probability that αS is greater 
in VIPs is 88.9% (Fig. 4c). Bootstrap samples of non-VIPs (1,000 
replicates) resulted in no αS estimates as high as those obtained 
from VIPs (Supplementary Fig. 19). These results are concordant 
with the α(x) summary statistics for VIPs, which had larger values 
at high-frequency alleles than non-VIPs (Fig. 4d). Interestingly, 
α(x) is lower for VIPs than non-VIPs at low frequency, suggest-
ing increased overall levels of conservation among VIPs (see also 
Supplementary Fig. 9, where we find support for stronger negative 
selection against non-synonymous mutations in VIPs).

Discussion
A long-running debate in evolutionary biology has concerned the rela-
tive importance of drift and selection in determining the rate of diver-
sification among species3,4,6,13. While previous studies have shown that 
there is a substantial signal of adaptation in Drosophila17, estimates of 
adaptation rate in humans are much lower13. Here, we extended the 
classic MK framework to account for weakly beneficial alleles, and 
we provide evidence for a high rate of weakly adaptive mutation in 
humans. We show that a state-of-the-art approach to adaptation rate 
estimation that does not account for beneficial polymorphism pro-
vides conservative estimates of α (α ̂ = .0 076 for these data)23, while 
our method nearly doubles the estimated human adaptation rate  

(to α ̂ = .0 135). Most of the adaptation signal that we detected was 
due to weakly beneficial alleles. Interestingly, VIPs supported a much 
higher rate of adaptation than the genome background (α ̂ = .0 226), 
especially for strongly beneficial substitutions (α ̂ = .0 126S  compared 
to α ̂ = .0 041S  genome-wide). Our results provide an evolutionary 
mechanism that partially explains the apparently low observed rate 
of human adaptation in previous studies, and extends support for 
viruses as a major driver of adaptation in humans25.

It has long been known that recombination could, in principle, 
affect the evolutionary trajectories of both beneficial and del-
eterious alleles33,43,44, and studies in Drosophila45,46 and dogs47 have 
provided evidence for the effect of recombination on divergence 
and load. Despite the expectation that recombination could have 
a strong effect on adaptation in humans, studies have differed on 
how recombination affects human divergence and polymorphism. 
One human genomic study explored the ratio D

D
N

S
 as a function of 

recombination rate, and found no evidence for an effect of recom-
bination on divergence rate48. Our results may partially explain why 
D
D

N

S
 does not fully capture the effect of recombination on divergence 

in humans. As BGS increases in strength, the rate of accumulation 
of deleterious alleles increases while the rate of fixation of weakly 
adaptive alleles decreases. These two effects partially offset each 
other, which should reduce the sensitivity of D

D
N

S
 as a tool in detect-

ing the effect of recombination on divergence. A more recent study 

Table 1 | Datasets and corresponding adaptation rates

Dataset NS SyN ̂α Ŵα Ŝα

Whole-genome 29,925 38,135 0.135 (0.096,0.17) 0.097 (0.0,0.21) 0.041 (0.0,0.13)

VIPs 6,249 10,309 0.224 (0.17,0.28) 0.098 (0.0,0.24) 0.126 (0.018,0.26)

Non-VIPs 23,676 27,826 0.12 (0.09,0.15) 0.077 (0.01,0.13) 0.042 (0.0,0.09)

Estimated α values represent the mean of posterior distribution. NS and SYN represent the number of non-synonymous and synonymous fixations, respectively. Values in parentheses represent the area of 
95% highest posterior density. 
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Fig. 4 | virally interacting genes support a high rate and strength of adaptation. a, Posterior distributions for α, αW and αS for VIPs (4,066 genes). b, The 
same quantities for non-VIPs (12,962 genes). c, Posterior distribution of the difference in α between VIPs and non-VIPs. d, α(x) as a function of derived 
allele frequency x for VIPs and non-VIPs, specifically at the values of x that we use for statistical inference.

NAtUrE EcoLogy & EvoLUtioN | VOL 3 | JUNE 2019 | 977–984 | www.nature.com/natecolevol 981

http://www.nature.com/natecolevol


Articles Nature ecology & evolutioN

provided evidence that recombination affects the accumulation of 
deleterious polymorphic alleles49, but did not provide detailed infor-
mation about the effect of recombination on adaptation. Our results 
are consistent with the idea that weakly deleterious alleles are pre-
dicted to segregate at higher frequencies in regions under strong 
BGS, and we additionally show that BGS affects the accumulation 
of weakly beneficial alleles in humans.

While classic MK approaches estimate only the rate of adaptation, 
our method extends the MK framework to provide information on 
both the rate and strength of selection. While previous approaches 
used to estimate the strength of adaptation have either focused on 
the dip in diversity near sweeping alleles31,45,50–52 or directly inferred 
the DFE from the frequency spectrum19, our approach capitalizes 
on an orthogonal signal of the reduction in fixation rate of weakly 
beneficial alleles induced by selection at linked sites. We developed 
an ABC method to capture this signal, but less computationally 
intensive methods could also be used—for example, the original 
aMK approach could be applied in bins of BGS strength. If a sub-
stantial proportion of adaptation is due to weakly beneficial alleles, 
such an analysis should result in a strong correlation between BGS 
strength and (potentially conservative) α estimates. However, it 
should be noted that cryptic co-variation between gene functions 
(such as VIPs) and BGS strength could confound such inferences.

We supposed that the main effects of linked selection in humans 
are due to background selection, but in principle genetic draft could 
drive similar patterns. Draft is expected to substantially reduce genetic 
diversity when sweeps occur frequently, and can impede the fixation 
of linked beneficial alleles53,54. Previous work has also shown that 
strong draft can alter the fixation rate and frequency spectra of neutral 
and deleterious alleles23. We performed simulations of strong draft in 
1-MB flanking sequences surrounding a gene evolving under natural 
selection, and tested the magnitude of the deviation from theoretical 
predictions under a model of background selection alone. Consistent 
with previous work, we observed that draft increases the fixation rate of 
deleterious alleles and thereby decreases α (ref. 23). However, the effect 
on α(x) is only modest at the frequencies that we used in our inference 
procedure (that is, <75%), even when the strength and rate of posi-
tive selection were much higher than we and others have inferred in 
humans (although there is a modest deviation around 75% frequency, 
the highest frequency we used in our inference; Supplementary  
Fig. 4c,d). This implies that draft due to selected sites outside genes 
would have to be much stronger than that due to positive selection 
inside exons to drive the effects that we infer in the human genome. 
We note that it is likely that in species undergoing both strong,  
frequent sweeps and BGS (for example, Drosophila—see ref. 31), draft 
will contribute to the removal of weakly beneficial polymorphism.

Selection has left many imprints on the human genome, with 
studies reporting signatures of selective sweeps52, soft sweeps29, 
background selection34, negative selection40,42 and polygenic adap-
tation28. Nevertheless, considerable uncertainty remains about the 
relative importance of these evolutionary mechanisms, especially in 
regard to the rate and strength of positive selection. Recent work has 
suggested that the contrasting adaptation rate estimates of previous 
studies51,52 can be reconciled by arguing that most adaptation signals 
in humans are consistent with adaptation from standing variation29. 
Our results show that the frequency spectra and patterns of diver-
gence are also consistent with the idea that many adaptive alleles 
segregate for much longer than is expected for a classic sweep, and 
hence also help to reconcile the results of previous studies.

In addition to determining the rate, strength and mechanisms of 
adaptation, there is an ongoing effort to find the biological processes 
most important for driving adaptation. Previous work has shown 
that viruses are a critical driver of adaptation in mammals25, but the 
strength of the fitness advantages associated with resistance to (or 
tolerance of) infection remains unclear. Our approach clarifies that 
strongly adaptive fixed differences are also enriched, approximately 

threefold, in VIPs relative to non-VIPs. In contrast, weak adaptation 
rate was not substantially different between VIPs and non-VIPs, 
suggesting that weak adaptation may proceed through mechanisms 
that are shared across proteins regardless of function (for example, 
optimization of stability). While we have focused on VIPs here due 
to the expected fitness burdens associated with infection, in future 
research our approach could be used to investigate adaptation in 
any group of genes, or extended to partitioning of genes into strong 
and weak adaptation classes.

The model that we fit to human data does an excellent job of 
recapitulating the observed patterns in the TGP data, but we were 
concerned that several possible confounding factors could have 
influenced our results. We showed that seven confounding factors 
(ancestral mis-polarization55, demographic model mis-specifica-
tion56,57, BGS model mis-specification, co-variation of BGS and 
sequence conservation, GC-biased gene conversion20, selection 
on synonymous alleles58 and mis-specification of strongly and/or 
weakly beneficial selection coefficients) are unlikely to have sub-
stantially influenced the results (see Supplementary Information), 
but it should be noted that the adaptive process in our model is 
exceedingly simple and it is very likely that the evolutionary pro-
cesses driving diversification are much more complex. We supposed 
that adaptation proceeds in two categories, weak and strong selec-
tion, each of which is described by a single selection coefficient. In 
reality, adaptive alleles are likely to have selection coefficients drawn 
from a broad distribution, and adaptation is likely to proceed by a 
variety of mechanisms, including sweeps52, polygenic adaptation28 
and selection from standing variation29. While our results show that 
BGS shapes adaptation rate across the genome, our method does 
not differentiate among adaptation mechanisms. We expect that 
future research will further clarify the relative importance of vari-
ous selection mechanisms in shaping genomic patterns of diversity 
in the genomes of humans and other organisms10,59.

Our method is flexible in that it could be applied to any spe-
cies for which both divergence/polymorphism data and estimates 
of background selection strength are available. As with the original 
aMK approach, we showed that the α estimates we obtained are not 
highly sensitive to recent demographic uncertainty. Our approach 
may therefore be effective in providing more accurate estimates of 
adaptation rate in non-model species. Despite recent advances, the 
evolutionary mechanisms that shape genetic diversity across species 
(which could include linked selection, population size and/or popu-
lation demography) remain the subject of debate11,12,15. Future work 
using and extending our method, which accounts for the effect of 
weakly beneficial alleles on adaptation rate estimates, could help to 
resolve this open question.

Methods
Divergence and polymorphism data. We retrieved the number of polymorphic 
sites and their allele frequencies in human coding sequences, as well as the number 
of human-specific fixed substitutions in coding sequences since divergence 
with chimpanzees. Fixed substitutions were identified by parsimony based on 
alignments of human (hg19 assembly), chimpanzee (panTro4 assembly) and 
orangutan (ponAbe2 assembly) coding sequences. Human coding sequences from 
Ensembl v.73 (ref. 60) were blatted61 on the panTro4 and ponAbe2 assemblies and 
the best corresponding hits were blatted back on the hg19 human assembly to 
finally identify human–chimp–orangutan best reciprocal orthologous hits. We used 
the Blat-fine option to ensure that even short exons at the edge of coding sequences 
would be included in the hits. We further used a Blat protein -minIdentity 
threshold of 60%. The corresponding human, chimpanzee and orangutan coding 
sequences were then aligned with the PRANKs coding sequence evolution model62 
after removal of codons containing undefined positions.

For each human coding gene in Ensembl we considered all possible protein-
coding isoforms and aligned each isoform individually among human, chimpanzee 
and orangutan. The numbers of polymorphic or divergent sites are therefore 
the numbers over all possible isoforms of a human gene (however, the same 
polymorphic or divergent site present in multiple isoforms was counted only once). 
If a polymorphic or divergent site was synonymous in an isoform but  
non-synonymous in another isoform, we counted that as a single non-synonymous 
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polymorphic or divergent site. Only fixed divergent sites were included, meaning 
that substitutions still polymorphic in humans were not counted as divergent.

The derived allele frequency of polymorphic sites herein corresponds to the 
frequency across all African populations from TGP phase 3, which comprises 
661 individuals spread across seven different subpopulations39. Allele frequencies 
were extracted from vcf files provided by the TGP for the phase 3 data. In total, 
17,740 human–chimpanzee–orangutan orthologues were included in the analysis. 
Supplementary Data Table 1 provides the number of synonymous and non-
synonymous polymorphic or divergent sites for each of these 17,740 orthologues, 
as well as the allelic frequencies of the polymorphic sites. Polymorphic sites were 
counted only if they overlapped those parts of human coding sequences that were 
aligned with chimpanzee and orangutan coding sequences. The ancestral and 
derived allele frequencies were based on the ancestral alleles inferred by TGP 
phase 3 and available in the previously mentioned vcf files39.

Model-based simulations and calculations. We tested the robustness of the 
aMK approach to the presence of weakly beneficial alleles using simulation and 
theory. We simulated simultaneous negative and positive selection in coding 
sequences using model-based forward simulations under a range of scenarios63,64. 
We supposed that non-synonymous alleles are under selection while synonymous 
alleles are neutral. In each simulation, we set α = αW + αS = 0.2, where αW is the 
component of α due to weakly beneficial mutations (2Ns = 10) and αS represents 
strongly beneficial alleles (2Ns = 500). Note that α is not treated as a parameter in 
the analyses herein; we use analytical theory to calculate the mutation rates for 
deleterious alleles and advantageous alleles that result in the desired α, meaning 
that α is a model output and not a model input. We drew deleterious selection 
coefficients from a gamma distribution inferred from human sequence data40, 
and we varied αW from 0 to 0.2. We used the simulated allele frequency spectra 
and fixed differences to calculate the α(x) summary statistics. The results of these 
simulations are provided in Fig. 1, and additional simulation details are included in 
the Supplementary Information.

We also performed analytical calculations under the same evolutionary 
model using results from diffusion theory. These calculations are described in the 
Supplementary Information (see the sections entitled ‘Analytical approximation 
to α(x)’ and ‘Background selection and adaptive divergence’). Software to perform 
these calculations is available at https://github.com/uricchio/mktest.

Using ABC-MK to infer adaptation rate and strength. We developed an ABC 
approach for estimation of αW and αS in the presence of BGS and complex human 
demography65. We sampled parameters from previous distributions corresponding 
to the shape and scale of deleterious selection coefficients (assumed to be gamma 
distributed) and the rate of mutation of weakly and strongly beneficial mutations. 
We performed forward simulations63,64 of simultaneous negative and positive 
selection at a coding locus under a demographic model inferred from NHLBI 
Exome project African American samples66, with varying levels of background 
selection from π/π0 = 0.2 to π/π0 = 1.0 and the sampled parameter values. We then 
calculated α(x) using these simulated data, sampling alleles from the simulations 
such that the distribution of BGS values in the simulation matches that in the 
empirical data as calculated by a previous study34. We used α(x) values at a subset 
of frequencies x as summary statistics in ABC (specifically, at derived allele counts 
1, 2, 5, 10, 20, 50, 100, 200, 500 and 1,000 in a sample of 1,322 chromosomes). 
To improve efficiency, we employed a resampling-based approach that allows us 
to query many parameter values using the same set of forward simulations (see 
Supplementary Information).

We tested our approach by estimating parameter values (population-scaled 
mutation rates θS, θW and the parameters of a gamma distribution controlling 
negative selection strength) and quantities of interest (αW, αS, α) from simulated 
data. We found that the method produces highly accurate estimates for most 
inferred parameters and α values (including αW, αS and total α; Supplementary 
Fig. 6). Some parameter values (particularly those corresponding to the DFE) over 
deleterious alleles and mutation rates of beneficial alleles) were somewhat noisily 
inferred. We found that estimations of α were not very sensitive to various types of 
model mis-specification (See Supplementary Information, ‘Robustness analyses’), 
but αW and αS were modestly affected by mis-specification of the demographic 
model or the DFE of alleles driving BGS. We term our approach ABC-MK.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Supplemental Data Table 1 is provided on the publisher’s website. The data that  
we used to parameterize our model are also available online at https://github. 
com/uricchio/mktest. Columns in Supplementary Data Table 1 are as follows:  
1, Ensembl coding gene identification; 2, number of non-synonymous polymorphic 
sites; 3, respective derived allele frequencies of these sites separated by commas; 4, 
number of synonymous polymorphic sites; 5, respective frequency-derived allele 
frequencies of these sites; 6, number of fixed non-synonymous substitutions  
on the human branch; and 7, number of fixed synonymous substitutions on the 
human branch.

code availability
The code that we used to parameterize our model is freely available online at 
https://github.com/uricchio/mktest.
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- A description of any restrictions on data availability

The supplemental table, along with the data that we used to parameterize our model, is available online at https://github.com/uricchio/mktest
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We use models of weak adaptation to show that previous methods to estimate adaptation rate provide inaccurate estimates when 
adaptation is weak.  We then extend existing methods to correct this issue, and show that variation in the strength of linked selection 
can be used to additionally estimate both adaptation rate and strength.  We apply our method to human genomes to show that 
human polymorphism and divergence data is consistent with weak adaptation genome-wide, while virus interacting proteins support 
both faster and stronger adaptation than the genome background.  

Research sample We used genetic data from the 661 samples of African origin from the Thousand Genomes Project in our study.  We chose these 
samples because 1) African samples have been understudied in previous human genetics research and 2) the best-fitting 
demographic models for this continental group are simpler than European demographic models, simplifying our analysis.

Sampling strategy Since we used previously sampled data we were restricted to the samples available and did not make any sampling design choices 
herein.

Data collection We used publicly available data.

Timing and spatial scale The data were collected by the 1000 genomes consortium. Sample collection is described here: https://media.nature.com/original/
nature-assets/nature/journal/v526/n7571/extref/nature15393-s1.pdf.  According to this document, the samples were sequenced 
between October 2012 and March 2013.

Data exclusions We included genetic data from all human coding regions for which we could map an ortholog and a B-value, as described in the 
methods section.  The total data set is described in Table 1. 

Reproducibility We validated our estimation procedures by simulating a large number of datasets and applying our approach to the simulated data.   

Randomization All samples were combined into a single group (i.e., we perform estimation on genetic data from individuals from a single continental 
group, and do not compare across groups).

Blinding Blinding was not necessary because we do not tune our analysis to the data in any way -- we prepared our estimation procedure by 
applying it to simulated data and simply report the estimates obtained from the real data.  

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Methods
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