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Selection and mutation shape the genetic variation underlying human traits, but the specific evolutionary mechanisms driv-

ing complex trait variation are largely unknown. We developed a statistical method that uses polarized genome-wide association

study (GWAS) summary statistics from a single population to detect signals of mutational bias and selection. We found evidence

for nonneutral signals on variation underlying several traits (body mass index [BMI], schizophrenia, Crohn’s disease, educational

attainment, and height). We then used simulations that incorporate simultaneous negative and positive selection to show that

these signals are consistent with mutational bias and shifts in the fitness-phenotype relationship, but not stabilizing selection

or mutational bias alone. We additionally replicate two of our top three signals (BMI and educational attainment) in an external

cohort, and show that population stratification may have confounded GWAS summary statistics for height in the GIANT cohort.

Our results provide a flexible and powerful framework for evolutionary analysis of complex phenotypes in humans and other

species, and offer insights into the evolutionary mechanisms driving variation in human polygenic traits.
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Impact Summary
Many traits are variable within human populations and

are likely to have a substantial and complex genetic

component. This implies that mutations that have a

functional impact on complex human traits have arisen

throughout our species’ evolutionary history. However,

it remains unclear how evolutionary processes such as

natural selection may have acted to shape trait vari-

∗Lawrence H. Uricchio and Hugo C. Kitano are co-first authors, and

Alexander Gusev and Noah A. Zaitlen are co-last authors.

ation at the genetic and phenotypic level. Better un-

derstanding of the mechanisms driving trait variation

could provide insights into our evolutionary past and

help clarify why it has been so difficult to map the pre-

ponderance of causal variation for common heritable

diseases.

In this study, we developed and applied methods for

detecting signatures of mutation bias (i.e., the propen-

sity of a new variant to be either trait-increasing or

trait-decreasing) and natural selection acting on trait

variation. We applied our approach to several heritable
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traits, and found evidence for both natural selection and

mutation bias, including selection for decreased body

mass index [BMI] and decreased risk for Crohn’s dis-

ease and schizophrenia.

While our results are consistent with plausible evo-

lutionary scenarios shaping a range of traits, it should

be noted that the field of polygenic selection detection

is still new, and current methods (including ours) rely

on data from genome-wide association studies (GWAS).

The data produced by these studies may be vulnerable

to certain cryptic biases, especially population stratifi-

cation, which could induce false selection signals. We

therefore repeated our analyses for the top three hits in a

cohort that should be less susceptible to this problem—

we found that two of our top three signals replicated

(BMI and educational attainment), while height did

not. Our results highlight both the promise and pitfalls

of polygenic selection detection approaches, and sug-

gest a need for further work disentangling stratification

from selection.

Natural selection and mutation shape variation within and

between populations, but the evolutionary mechanisms shaping

causal variation for human traits remain largely unknown. Stud-

ies of selection in humans have often focused on classic selective

sweeps (Sabeti et al. 2002, 2006; Voight et al. 2006; Hernandez

et al. 2011; Enard et al. 2014), but other processes such as stabi-

lizing selection (Gilad et al. 2006; Sanjak et al. 2018), polygenic

adaptation (Turchin et al. 2012; Berg and Coop 2014), background

selection (Charlesworth 1994; McVicker et al. 2009), negative se-

lection (Boyko et al. 2008), and soft sweeps (Messer and Petrov

2013; Schrider and Kern 2017) may also play an important role in

shaping human diversity. Methods to detect selection under these

more complex models are needed if we are to fulfill the promise

of genomics to explain the evolutionary mechanisms driving the

distribution of heritable traits in human populations (Pritchard

et al. 2010).

With the recent proliferation of paired genotype and pheno-

type data from large human cohorts, it is now feasible to test for

polygenic selection on specific traits (Turchin et al. 2012; Berg

and Coop 2014; Robinson et al. 2015; Yang et al. 2015; Field

et al. 2016). While these studies have argued that polygenic selec-

tion is likely to be an important determinant of variation in traits

such as height and skin pigmentation (Berg and Coop 2014), im-

portant questions remain about the evolutionary mechanisms that

drive complex trait variation. In particular, most previous stud-

ies of selection on human complex traits have focused either on

polygenic adaptation (Turchin et al. 2012; Berg and Coop 2014;

Field et al. 2016; Berg et al. 2017; Edge and Coop 2018; Racimo

et al. 2018) or stabilizing/negative selection (Yang et al. 2015;

Zeng et al. 2018; Simons et al. 2018), and have not incorporated

mutational bias (i.e., the propensity for new mutations to be pref-

erentially trait-increasing or preferentially trait-decreasing). To

detect polygenic adaptation, studies have relied on genotype data

from multiple populations to probe the frequency and linkage

properties of trait-associated alleles as compared to a null based

on genome-wide single nucleotide polymorphisms (Turchin et al.

2012; Berg and Coop 2014; Racimo et al. 2018), or have used

haplotype-based statistics and dense sequence data from a sin-

gle population (Field et al. 2016). Negative selection has been

investigated by comparing empirical data to null models of the

relationship between frequency and squared effect sizes (Schoech

et al. 2017) or linkage disequilibrium and per-single nucleotide

polymorphism heritability (Gazal et al. 2017). These studies have

argued that selection acts on many traits, and that both negative

(Gazal et al. 2017; Schoech et al. 2017) and positive (Berg and

Coop 2014; Berg et al. 2017) selection act on complex traits such

as height and body mass index (BMI).

While each of these approaches has provided insights into the

evolution of complex traits, a more comprehensive view of trait

evolution will require methods that can account for pleiotropic

selection and incorporate signals of both adaptive and deleteri-

ous selection processes simultaneously. Recent progress has been

reported in accounting for higher dimensional trait spaces (Berg

et al. 2017; Simons et al. 2018), but there is a need for models

and inference tools integrating signatures of positive and nega-

tive selection on complex traits (Sanjak et al. 2018). Indeed, a

natural way to model polygenic adaptation is to view stabilizing

selection as a null process, with punctuated changes in the fittest

trait value (herein called the “optimal trait value” or “trait opti-

mum”) driving brief periods of adaptation (Barton 1986; Jain and

Stephan 2017). Mutational bias may also be an important contrib-

utor to the evolutionary dynamics of complex traits (Charlesworth

2013), but has not been directly incorporated into recent empirical

studies. If there is a bias in the direction of effect of de novo mu-

tations, populations may carry less standing variation for alleles

that alter the phenotype in one direction than the other, potentially

altering the dynamics of future adaptation to changes in the trait

optimum. Moreover, biases in mutation rate for selected traits

may induce detectable patterns in the relationship between allele

frequency and effect size, for example by driving an excess of

trait-increasing mutations among young (low-frequency) alleles

but not old alleles.

Here, we develop a powerful method for detecting differ-

ences between ancestral and derived allele effect sizes—which

may be driven by selection or mutational bias—within a single

population. We show that the polarization of GWAS summary
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statistics by their ancestral/derived state (which we refer to as

an evolutionary compass) provides information about the evolu-

tionary processes shaping trait variation. We propose a simple

summary statistic of the relationship between effect sizes and

allele frequency, and show that it is sensitive to both mutational

bias and various models of selection. We apply our approach

and find nonneutral signals that are consistent with selection and

mutational bias in the genetic variation underlying BMI, educa-

tional attainment, Crohn’s disease, schizophrenia, and height. We

develop a model-based inference procedure to disentangle mu-

tational bias from selection, and show that both processes are

necessary to explain the observed GWAS summary data. We then

perform a replication study in the UK Biobank for our top three

signals, and find that educational attainment and BMI replicate in

this more homogeneous cohort, while height does not. We discuss

implications of our findings for human evolutionary history and

GWAS of biomedically relevant traits.

Results
AN “EVOLUTIONARY COMPASS” FOR GWAS

Associations between genotypes and complex traits are usually

reported with respect to a reference allele that is arbitrarily cho-

sen, which can obscure the direction of effect of new mutations.

When selection acts on traits, it favors the reproductive success

or survival of individuals with particular trait values, implying

that the fitness effect of new mutations may depend on both the

sign and magnitude of their impact on a selected trait. Therefore,

we choose ancestral alleles as the reference state and explore the

relationship between derived allele effect sizes and derived allele

frequency, which we encode in a βDAF plot (i.e., a plot encoding

the relationship between the mean value of effect sizes β estimated

in a GWAS (β̄) and derived allele frequency (DAF); Fig. 1). Note

that we use estimated effect sizes from all alleles to compute β̄,

regardless of their significance.

A βDAF plot contains information about mutational bias and

selection on the trait of interest. In the null case of a neutrally

evolving trait for which trait-increasing and trait-decreasing mu-

tations are equally likely, the βDAF curve will be flat will have

expectation β̄ = 0 in all derived allele frequency bins. This is be-

cause in a neutral model, the probability with which an allele seg-

regates at frequency x does not depend on effect size β (Fig. S2).

A mutational bias toward trait-increasing or trait-decreasing alle-

les in the absence of selection on the trait will shift the mean value

of β in the direction of the bias, but will not induce β̄ to depend

on frequency (Fig. S2).

While many evolutionary processes will induce patterns in

the βDAF plot (including directional selection, which we explore

in the Supporting Information with simulations and analytical

calculations in Figs. S1–S3), we next consider an example of

stabilizing selection with shifts in the optimal trait value for illus-

trative purposes. Stabilizing selection is typically parameterized

by several parameters, but here we focus on the optimal pheno-

type value, φo, which represents the value of the phenotype that

confers the highest fitness. Applying a classic stabilizing selection

model, we suppose that fitness is controlled by a Gaussian func-

tion centered at φo (Robertson 1956; Barton 1986; Simons et al.

2018) (Fig. 1A). In addition, we suppose that trait-increasing mu-

tations may be more or less likely than trait-decreasing mutations,

which we capture with the parameter δ (defined as the proportion

of trait-altering de novo mutations that increase trait values), and

that φo can change, inducing a brief period of adaptation in which

trait values within the population equilibrate to a new optimal

value (Fig. 1B).

We performed forward simulations of complex traits under

this model and explored how various evolutionary parameters af-

fect the properties of a βDAF plot. Although we consider a very

large range of possible parameter combinations when performing

statistical inference in later sections, here we focused on four mod-

els, including one model of stabilizing selection in the absence

of shifts in the optimal trait value, and three models that varied

the timing of a shift (ts) in the optimal trait value φo (Fig. 1C).

All of the models included a bias in mutation rate toward trait-

decreasing alleles (δ = 0.4) and a European demographic model

that was fit to patterns of European genomic diversity (Gravel

et al. 2011). For models that include a shift in the optimal trait

value, we considered a change (denoted �φ) equal to two SDs

of the trait distribution. For reference, this would correspond to

approximately a 5 inch change in mean human height (Fryar et al.

2016). The remaining model parameters for the simulations in

Figure 1 are given in the Supporting Information (page 26). To

compute the mean effect size β̄ (Fig. 1D), we grouped alleles into

1% frequency bins and computed the mean effect size across all

derived alleles within the bin.

When there is a bias toward trait-decreasing alleles and sta-

bilizing selection acts on the trait, alleles at low frequencies have

strongly negative effect sizes, which generate a positive corre-

lation between effect size and frequency (Fig. 1D, red curves).

When the optimal value of the phenotype increases in response to

an environmental shift, the relationship between effect size and

selection coefficient also transiently changes (Fig. 1B), driving

some alleles with beneficial effects to higher frequencies (Fig. 1D,

yellow, green, and orange curves). This effect transiently changes

the relationship between allele frequency and effect size by pro-

moting trait-increasing alleles to higher frequencies, generally

increasing β̄ at all frequencies. Although β̄ is always negative at

low frequencies for the particular parameter combinations we in-

vestigated here, at high frequencies, β̄ can become positive due to

the preferential increase in frequency of trait-increasing alleles.

These effects decay as the time since the shift event increases
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A B

C D E

Figure 1. Panels A-B are schematics of the trait model, while C-E show simulation results. A: fitness impact of a β = 1 mutation, assuming

a symmetric fitness function. At equilibrium, the trait distribution P (φ) is symmetric about the optimal value of the phenotype, φo = 0.

The dashed line at φ = − 1
2 indicates the dividing line between individuals with increased fitness f after a β = 1 mutation (f (φ + 1) > f (φ))

from those with decreased fitness (f (φ + 1) < f (φ)). B: schematic of the relationship between effect size and fitness effect. At time t = ts,

the optimal trait value φo increases, and trait-decreasing alleles have decreased fitness while trait-increasing alleles have increased

fitness. Still, only trait-increasing alleles of small effect are on average fitness-increasing (inset). C: Mean trait value φ̄ as a function of

time for four simulated trait models, differentiated by the time of a shift in selection pressure. The simulated European demographic

model is plotted in the background (not to scale) D: β̄ as a function of derived allele frequency (DAF) for each model simulated in C. Points

represent the mean value of β computed over 100 independent simulations E: Sβ(0, x) as a function of DAF for each model plotted in C. D

and E represent the mean over 100 independent simulations. (Abbreviations: AE: ancestral expansion, OOA: out-of-Africa, FE: founding

of Europe, DM: demographic model).

(Fig. 1D). The slow decay indicates that such patterns might be

detectable in trait data for tens of thousands of years, with the

time-scale for detection depending on the model parameters and

the precision of effect size estimates in GWAS summary data.

A STATISTICAL TEST FOR POLYGENIC SELECTION

AND MUTATIONAL BIAS ON ORIENTED GWAS

Selection and mutational bias change the relationship between

β̄ and DAF (Fig. 1; Figs. S1–S3). We desire a simple statistic

that will differ from zero when selection and/or mutational bias

act. We first consider the integral of the area under a βDAF plot,

noting that while other statistics are also likely to be informative

(Yang et al. 2015), not all choices will be robust to ancestral state

uncertainty (see Supporting Information). We approximate this

integral with the sum (Sβ) over β for derived allele frequency bins

of some width yw.

Sβ( fi , f j ) =
∑

y∈Yi j

β(y). (1)

As in Fig. 1, we group alleles into frequency bins of width yw such

that the set Y is given by the sequence of frequency tuples Y =
〈(0, yw), (yw, 2yw), . . . (1 − yw, 1)〉. Yi j refers to the subsequence

of Y that includes all elements indexed between i and j , and fi

is the lower frequency in the i-th tuple while f j is the higher

frequency in the j-th tuple. We choose yw = 0.01 such that there

are a large number of alleles within each bin.

The Sβ statistic is sensitive to both mutational bias and se-

lection, although these two distinct evolutionary processes drive

distinct patterns in a βDAF plot. When mutational bias acts on

new mutations in the absence of selection on the trait, there is

no expectation of a relationship between the magnitude of effects

and allele frequency, and hence the expected value of β is the

same in all allele frequency bins (Fig. S2). This means that the

expected value of Sβ is simply equal to the mean effect size of

new mutations multiplied by the number of bins, and that the sign

of Sβ is equal to the sign of the bias in mutational effects.

In the absence of mutational bias, Sβ is sensitive to some

(but not all) selection models. When a trait is under long-term

stabilizing selection with no change in the optimal phenotype and

no mutational bias, trait-increasing alleles are equally deleterious

and equally likely to occur as trait-decreasing alleles, meaning that

the expectation of Sβ is 0 (which concords exactly with negative

selection models—Fig. S3, purple curves). However, any bias in

mutation rate toward trait-increasing or -decreasing alleles will
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drive Sβ to have non-zero expectation (Fig. S3). In contrast to

the neutral case with mutational bias, selection in conjunction

with mutational bias causes the mean value of β to be greater in

magnitude in bins of low derived allele frequency than high allele

frequency, since selection will tend to constrain alleles with the

largest effects to the lowest frequencies (Fig. 1C–E, red curves;

Fig. S3).

The most interesting patterns emerge when stabilizing selec-

tion acts on a trait in conjunction with shifts in the fitness opti-

mum. When stabilizing selection acts on a trait under along with

mutational bias (δ = 0.4) and no shift in the optimum, Sβ(0, x)

is negative at all x , and decreases as a function of frequency (red

curve, Fig. 1E; we show in Fig. S3 and that this same pattern holds

under a well-studied directional selection model for complex traits

(Eyre-Walker 2010)). When shifts in the optimum toward higher

trait values occur, higher frequency variants have mean positive

effect sizes, causing Sβ(0, x) to be non-monotonic and Sβ(0, 1)

to potentially have positive sign. As time elapses since the shift,

the high frequency trait-increasing alleles will tend to drift to

the boundary and fix or be lost, causing this signal to gradually

disappear (Fig. 1E). Note that mutational bias in the absence of

selection can generate a non-zero Sβ—however, mutational bias

alone induces Sβ(0, x) to increase in magnitude monotonically and

linearly in x , a pattern that is not expected for selection (Fig. S2

and Supporting Information). We use model-based analyses to

tease apart mutational bias and selection effects in later sections.

A PERMUTATION PROCEDURE TO GENERATE A

NULL DISTRIBUTION

While we have noted that Sβ has an expected value of 0 under the

neutral null without mutational bias, the variance of Sβ depends

on linkage between causal alleles and noncausals, since noncausal

alleles will have non-zero estimated effect sizes when they are in

Linkage disequilibrium (LD) with a causal allele. To control for

potential confounding by LD, we developed a simple permutation-

based procedure for computing the null-distribution of frequency-

effect size relationships in GWAS summary statistics under a

neutral evolutionary model. We first polarize all alleles such that

the derived allele is the causal allele. Then, for each of 1703

previously identified approximately independent linkage blocks

(Berisa and Pickrell 2016), we select a random sign (positive or

negative with equal probability), and multiply all the effect sizes

in the LD block by this sign. We then recompute the test statistic

of interest, such as the correlation between frequency and MAF,

on the randomized data. This generates a null distribution for the

test statistic that conservatively accounts for the linkage between

inferred effect sizes, and maintains the frequency spectrum and

marginal distribution of the magnitude of inferred effect sizes.

APPLICATION TO GWAS SUMMARY DATA

We applied Sβ within our framework to GWAS summary data

for BMI, height (Wood et al. 2014), and educational attainment

(Okbay et al. 2016) to assess its power for detecting selection,

given that previous studies have suggested that these phenotypes

may be under selection (Turchin et al. 2012; Berg and Coop 2014;

Robinson et al. 2015; Field et al. 2016; Racimo et al. 2018). We

observe that effect sizes are correlated with frequency, and that

Sβ is a non-monotonic function of frequency (Fig. 2), consistent

with selection and mutational bias (Fig. 1E; note that the large

spike in both BMI and height at high frequency can be explained

by ancestral uncertainty, Fig. S7). We reject the neutral null for

all three traits (P < 5 × 10−4; Fig. 2 and Table 1). We then ap-

plied our method to six additional phenotypes, which we selected

to span a wide range of phenotypes that we hypothesized might

be targets of selection, including body size (Wood et al. 2014),

psychiatric conditions (CDG Psychiatric Genomics Consortium

2013), immune-related traits (Franke et al. 2010), reproductive

traits (Day et al. 2015), and cardiovascular traits (Willer et al.

2013). We find an additional nonneutral signal for Crohn’s dis-

ease, and a marginally significant signal for schizophrenia that

narrowly missed a multiple testing correction (Table 1; Figs. S8–

S16). When including only common variants in the test, we find

that seven of nine phenotypes have P-values under 0.1, suggest-

ing strong enrichment for selected traits among the test set despite

failure for some of the tests to exceed a multiple testing correction

(binomial P-value 3.0 × 10−6).

EVOLUTIONARY MODELS FOR SELECTION ON

HUMAN TRAITS

While our results show that Sβ has a strong nonneutral signature

for five of the nine phenotypes, we sought to further understand

the evolutionary models that could explain these signals. Purify-

ing selection alone seems an unlikely candidate for most of the

phenotypes, because the sign of Sβ is always the same as the sign

of β̄ under a purifying selection model (Fig. S3 and Supporting

Information), a pattern violated by height, BMI, Crohn’s, and edu-

cational attainment. Models of directional selection for increased

or decreased phenotype values in the absence of mutational bias

also share this pattern, as do models of mutational bias in the

absence of selection (Figs. S1 and S2; Supporting Information).

We hypothesized that these signals could be explained by a

model of stabilizing selection, mutational bias, and shifts in the

trait value conferring optimal fitness. We developed an evolution-

ary inference procedure based on rejection sampling (Tavaré et al.

1997) to infer the parameters that best fit the relationship between

frequency and effect size that we observe in the data (see Sup-

porting Information). Briefly, we calculate Sβ(0.01, x) (scaled by

Sβ(0.01, 0.99)) for a range of derived allele frequencies x , which

we then use as summary statistics for rejection sampling. We
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A B C

Figure 2. A: β̄ as a function of DAF for BMI and educational attainment (EA). B: Sβ(0, x) for the same data. C: neutral null distribution of

Sβ(0, 1) obtained by permutations. The vertical dashed line indicates the observed value of Sβ(0, 1) in the GWAS summary data.

Table 1. P-values corresponding to GWAS summary statistics for nine phenotypes that we hypothesized may be under selection. Values

in the first column include all alleles, while the second and third columns correspond to tests including only alleles with MAF > 1% and

MAF > 5%, respectively. The UK Biobank tests were performed on all alleles above 1% in frequency.

Phenotype Sβ(0, 1) P-value Sβ(0.01, 0.99) P-value Sβ(0.05, 0.95) P-value UKBB replication

Height <0.0005∗∗
<0.0005∗∗

<0.0005∗∗ 0.416
BMI <0.0005∗∗

<0.0005∗∗
<0.0005∗∗ 0.0095

Education <0.0005∗∗
<0.0005∗∗

<0.0005∗∗
<0.0005

WHR-BMI 0.566 0.8325 0.341 NA
GLL 0.4655 0.434 0.5645 NA
Crohn’s disease 0.0025∗∗ 0.0075∗ 0.018∗ NA
Menopause onset 0.1585 0.46 0.0475∗ NA
Depression 0.3915 0.01∗ 0.0305∗ NA
Schizophrenia 0.0085∗ 0.0035∗∗ 0.0625 NA

∗
Tests that pass a multiple testing correction (P < 0.005).

∗∗
Tests that were marginally significant (P < 0.05).

remove the lowest frequency variants (i.e., those with x < 0.01)

for the purpose of this inference to avoid the potential impact of

rare variant stratification on our results. We validated our method

with extensive simulations, and found that it is a noisy estima-

tor of the magnitude of δ and �φ (Fig. 3A and B—recall that

δ corresponds to the proportion of new mutations that are trait-

increasing), but has excellent power to estimate the direction of

both mutational bias and shift in optimal trait value (Fig. 3C

and D). Other parameters of the model (including heritability,

polygenicity, effect size distribution, and the time of the shift

in the fitness landscape; see Supporting Information) were in-

ferred with low accuracy as indicated by only modest correlations

between inferred and true parameter values, indicating that the

summary statistics we use contain little information about these

parameters. Inferred distributions of these parameters therefore

are not reported.

We find strong posterior support for a shift in optimal trait

value (�φ, measured in units of SDs of the population trait dis-

tribution) for all five phenotypes, as well as strong signals of

mutational bias (δ). Data for height and educational attainment

supported a shift toward increased trait values and a mutational

bias toward mutations that decrease the phenotype, while Crohn’s

disease and BMI supported shifts toward lower trait values and

mutational bias toward trait-increasing alleles (i.e., risk-increasing

for Crohn’s). Schizophrenia data supported a shift toward lower

risk, and a bias toward protective mutations, although a substantial

minority of parameter estimates supported no mutational bias or

a bias in the opposite direction (Fig. 3E). To further validate these

findings, we resampled from the inferred parameter distributions

and performed an independent set of forward simulations. We

find that the summary statistics computed on these out-of-sample

simulations (which were not used to fit the data) match the trends

observed in our data, confirming that the modeling framework

is capable of recapitulating the signals we observe in the data

(Fig. 3G).

POPULATION STRATIFICATION

Although Sβ is not sensitive to confounding by ancestral uncer-

tainty, we were concerned that these signals could potentially be

explained by other confounders, such as uncorrected population

stratification. Although recent studies have suggested that meth-

ods to account for stratification in GWAS often over-correct (Field

et al. 2016; Bulik-Sullivan et al. 2015), rare variant stratification

remains especially difficult to account for in GWAS (Mathieson

7 4 EVOLUTION LETTERS FEBRUARY 2019



DETECTING SELECTION SIGNALS IN TRAIT VARIATION

A B G

C D

E F

Figure 3. A-B: Inferred mutation bias (A) and selection shift (B) parameters as a function of true parameter values for our rejection

sampling method. C-D: Power of our rejection sampling method to correctly identify the direction of mutation bias (C) and shift in optimal

phenotype value (D), as a function of the true parameter value. E-F: Inferred approximate posterior distributions for five phenotypes

that were identified as non-neutral. G: Out-of-sample simulations using parameters inferred in E-F, plotted with the data used to fit each

model. Gray envelopes represent the middle 50% of simulation replicates, while the black points and curves show the observed data for

each phenotype.

and McVean 2012). We recomputed Sβ on alleles with MAF > 1%

and MAF > 5%, and found that the signals are robust within com-

mon alleles alone, suggesting that population structure is unlikely

to confound our estimates (Figs. S8–S16 and Table 1). Addi-

tionally, we recomputed Sβ on GWAS from the UK Biobank

(UKBB) for our top three signals, a replication cohort that em-

ployed strict population structure control in a more homogeneous

group of samples. We replicate the signals for both educational

attainment (P < 5 × 10−4) and BMI (P = 0.0095), noting that

the educational attainment data in our two datasets contain some

overlapping samples and hence are only partially independent and

the BMI signal is somewhat weaker in UKBB than GIANT (Sup-

porting Information and Fig. S17). Interestingly, height was not

replicated. We also applied two previous approaches that detected

signals of selection acting on height when analyzing the GIANT

summary statistics and found that neither replicated in the UKBB

EVOLUTION LETTERS FEBRUARY 2019 7 5
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(Turchin et al. 2012; Yang et al. 2015; Fig. S6). These results

are consistent with either overcorrection of structure within the

UKBB or undercorrection in the GIANT data, although the latter

seems more likely based on other recent studies (Berg et al. 2018;

Sohail et al. 2018—see Discussion).

Discussion
Many studies have suggested that selection shapes human genetic

variation (e.g., Fay et al. 2001), and recent work has suggested

that selection on complex traits may be a substantial driver of

human adaptation (Hernandez et al. 2011). Here, we developed

a novel empirical framework and a model-based rejection sam-

pling approach for detecting polygenic selection and mutational

bias that can be applied to GWAS summary data for a single

population. We call this approach an “evolutionary compass,”

because orienting alleles by their ancestral/derived status within

our framework provides insight into the evolutionary processes

shaping complex traits. We applied this evolutionary compass to

GWAS summary data for nine phenotypes, and showed that five

of them (educational attainment, height, Crohn’s disease, BMI,

and schizophrenia) are consistent with a model of selection and

mutation bias in shaping trait variation. Interestingly, among the

top three signals that were uncovered with our method, height did

not replicate in a more homogeneous cohort, while both BMI and

educational attainment were replicated.

If selection acts on biomedically relevant complex traits such

as Crohn’s disease and schizophrenia, there are important impli-

cations for the future of both medical and evolutionary genomics.

In medical genomics, an ongoing debate about the genomic ar-

chitecture of complex diseases is at the forefront of the field

(Manolio et al. 2009). When strong selection acts on complex

traits, it can elevate the role of rare alleles in driving trait vari-

ance (Lohmueller 2014). If rare alleles contribute a larger fraction

of the genetic variance than is expected under neutral models,

then very large GWAS that use only array-based genotyping in-

formation are very unlikely to be able to capture these signals,

and sequence-based studies and powerful rare variant approaches

that are robust to evolutionary forces (including those not inves-

tigated here, such as partial recessivity) will be needed (Uricchio

et al. 2016; Hernandez et al. 2017; Sanjak et al. 2017). More-

over, recent work has suggested that the over-representation of

Europeans in GWAS has limited the effectiveness of estimating

polygenic risk scores in other human populations (Martin et al.

2017). This is problematic for the transfer of genomic research

into the clinic, where precision medicine initiatives relying on

personal genetic information will be most successful if genetic

risk can be accurately predicted in diverse populations. While this

inability to predict across populations could be driven by neu-

tral demographic forces, if selection has driven numerous pheno-

types to acclimate to local environmental conditions in ancestral

human populations worldwide it could exacerbate this problem

dramatically.

In the field of human evolutionary genomics, most studies

have agreed that the impact of selection is widespread on the hu-

man genome, but the evolutionary mechanisms that drive genetic

and phenotypic diversity have been widely debated (Hernandez

et al. 2011; Enard et al. 2014; Schrider and Kern 2017). In our

study, we showed that GWAS summary statistics in Europeans for

BMI and Crohn’s disease are consistent with a bias in mutation

rate toward trait-increasing alleles, and a shift to a lower optimal

value of the trait, while educational attainment is consistent with

a mutational bias toward trait-increasing alleles and a shift toward

higher values of the trait optimum. The signal for schizophrenia

is consistent with an ancestral shift toward a lower optimum and a

stabilizing selection, with or without a mutational bias. It should

be noted that the model we used to fit these data assumed no

more than one shift in the optimal phenotype value, whereas this

quantity is likely to vary continuously with environmental condi-

tions for some traits. Models that additionally account for sexual

dimorphism (Stulp and Barrett 2016), higher dimensional trait

spaces (Simons et al. 2018), and evolutionary history of multiple

populations (Berg and Coop 2014; Racimo et al. 2018) may be

required to better understand the generality of these results across

human populations and traits.

Neanderthal introgression into modern humans has played

an important role in shaping traits in non-African populations

(Wall et al. 2013; McCoy et al. 2017). Given that Neanderthal al-

leles may contribute disproportionately to the genetic variance

in some traits (Simonti et al. 2016) and that some high fre-

quency trait-associated alleles have Neanderthal origins (Dan-

nemann and Kelso 2017; Prüfer et al. 2017), we hypothesized

that Neanderthal alleles for traits under selection might show dis-

tinct patterns from modern human alleles. Although Neanderthal

alleles do not share a common demographic history with mod-

ern human alleles, under the neutral null hypothesis we do not

expect Neanderthal alleles to have an increasing or decreasing

frequency and effect-size relationship, or to have a distribution

that differs substantially from modern human alleles. We, there-

fore, computed Sβ on alleles that have a Neanderthal origin (see

Supporting Information). Alleles for height and depression show

strikingly different patterns than alleles with modern human ori-

gins (Fig. S18). The results for height can be explained by se-

lection to promote Neanderthal height-increasing alleles to high

frequency, either along the Neanderthal lineage predating hu-

man introgression, or after admixture with human populations.

In contrast, our results for depression risk are consistent with an

excess of depression risk from Neanderthals (Simonti et al. 2016),
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and selection preferentially driving large effect alleles to low fre-

quency. We note that while Neanderthal alleles are not subject to

the same biases in ancestral state uncertainty as modern human

alleles, inferences of selection could still be biased by population

stratification.

Inference of selection on complex traits is vulnerable to sev-

eral possible confounders, including population stratification and

pleiotropic selection on off-target phenotypes (Novembre and

Barton 2018). Although theory suggests that stratification should

be straightforward to detect and correct at high frequency variants

in large samples (Patterson et al. 2006), an uncorrected bias in the

inferred β values due to population structure can make our test

(as well most others, such as Berg and Coop 2014; Yang et al.

2015; Field et al. 2016; Berg et al. 2017; Racimo et al. 2018)

anti-conservative. We used a series of experiments to show that

population structure is unlikely to bias the majority of our results,

including showing that the signal is robust to the exclusion of rare

alleles and performing a replication study in an external cohort.

However, one of our strongest signals (height) did not replicate

the UK Biobank, while two other signals of selection suggested

by earlier height studies also did not replicate in the UK Biobank

(Turchin et al. 2012; Yang et al. 2015). The nonreplication of

height is in concordance with other recent studies finding reduced

evidence for selection on height in the UK Biobank cohort apply-

ing different methods (Berg et al. 2018; Sohail et al. 2018). The

most conservative interpretation of the nonreplication of height is

to suppose that some of the signals we and others observed in the

GIANT cohort are driven by population stratification, and the UK

Biobank analysis correctly removes this spurious contamination.

Further research is needed to better disentangle stratification and

selection, and caution in interpreting the results of polygenic se-

lection tests is warranted while this field develops, even in more

homogeneous cohorts such as the UK Biobank (Novembre and

Barton 2018).

Pleiotropy can also induce biases in complex trait selection

detection. Selection on a trait that has correlated effect sizes with

another trait could result in false positives, in which the neutral

trait is spuriously identified. This is a general limitation of most

complex trait selection methods (but see Berg et al. 2017; Simons

et al. 2018). This phenomenon is clearly highlighted by our re-

sults on educational attainment, a phenotype that had no meaning

until recent historical times. While it might be tempting to iden-

tify a cognition-related phenotype as the target of selection, it

is possible that any trait with a cryptic shared genetic basis and

correlated effect sizes could be the target, and that the timing of

any such shift to larger trait values could have predated the hu-

man migration out-of-Africa. Thus, we cannot rule out a role for

correlated phenotypes in driving these signals, and our results do

not imply differences in phenotypes or polygenic scores between

Europeans and any other group. More work on disentangling se-

lection targets with a common genomic basis will be needed as

the field progresses.

Among the nine traits that we tested, we found that four had

strong non-neutral signals, and six of the nine had marginal evi-

dence for nonneutrality (we have conservatively removed height,

given its nonreplication in the UK Biobank). However, this does

not imply that the others are not subject to selection or mutation

bias. The power of our test depends on the strength of selection,

the polygenicity of the trait, the heritability of the trait, the muta-

tional bias, and the amount of ancestral uncertainty, in addition to

the sample size of the GWAS. If a trait is under strong stabilizing

selection, but the mutation rate of trait-increasing and -decreasing

alleles is exactly equal, then our test has no power. Because we

rely on the polarization of alleles by ancestral state, increased

uncertainty in ancestral state will also decrease our power (see

Supporting Methods). Moreover, if selection is weak, a small

number of causal alleles drive variance in the trait, or the trait

is only weakly heritable, power is greatly diminished. However,

increased sample sizes in GWAS will increase power, because the

variance of effect size estimates for even weak effect causal alle-

les decreases with sample size. In addition to working directly on

GWAS summary statistics from a single population, one strength

of our permutation-based approach is that other informative statis-

tics, such as the absolute value of the deviation between ancestral

and derived effect sizes, could also easily be applied, and may

have higher power. In future studies, it will be advantageous to

compare various summary statistics and to apply our approach to

species undergoing rapid environmental changes.

Materials and Methods
SOFTWARE

We wrote software in Python to implement the statistical test de-

scribed herein, and we developed a custom simulator of demogra-

phy and selection. The code to run our statistical test is freely

available online (https://github.com/uricchio/PASTEL). The

simulations (and their validation) are described in the Supporting

Information.
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Figure S1. A: When selection does not prefer either trait-increasing or trait-decreasing alleles, and mutation bias does not act on a trait, then trait-increasing
(pink) and -decreasing (blue) alleles are expected to have identical frequency spectra and equal mean β values within each frequency bin.
Figure S2. The relationship between β and DAF when only mutational bias acts on the trait (i.e., there is no selection).
Figure S3. A: A βDAF plot for various values of mutational bias (δ) towards trait decreasing alleles for traits under selection.
Figure S4. A comparison of simulated frequency spectra for a complex demographic/selection model for our Wright-Fisher simulator (black) and
SFS_CODE (red).
Figure S5. Conservative False Positive Rate estimation for detection of mutation rate bias and shifts in optimal phenotype value.
Figure S6. Correlation between mean effect size and allele frequency (A) and correlation the difference in frequency between northern and southern
Europe for the height increasing allele and p-value rank (B) in the GIANT study (gold) and the UK Biobank (gray).
Figure S7. The impact of ancestral uncertainty on the observed value of mean β as a function of derived allele count x .
Figure S8. Sβ for height.
Figure S9. Sβ for BMI.
Figure S10. Sβ for educational attainment.
Figure S11. Sβ for Crohn’s disease.
Figure S12. Sβ for schizophrenia.
Figure S13. Sβ for global lipid levels.
Figure S14. Sβ for menopause onset.
Figure S15. Sβ for major depression.
Figure S16. Sβ for waist-hip ratio adjusted for BMI.
Figure S17. Sβ for BMI (A-C), height (D-F), and educational attainment (G-I) in the UK Biobank.
Figure S18. Signals of putative polygenic selection and mutation bias on Neanderthal alleles.
Figure S19. A-C: Simulations with the same parameters as Fig. 1C-E, but with the shift in optimal phenotype of �φ = 2 occurring linearly over 100
generations (2500 years), rather than instantaneously in a single generation.
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