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ABSTRACT: Demographic events and natural selection alter patterns of genetic variation within populations and may play
a substantial role in shaping the genetic architecture of complex phenotypes and disease. However, the joint impact of
these basic evolutionary forces is often ignored in the assessment of statistical tests of association. Here, we provide a
simulation-based framework for generating DNA sequences that incorporates selection and demography with flexible models
for simulating phenotypic variation (sfs_coder). This tool also allows the user to perform locus-specific simulations by
automatically querying annotated genomic functional elements and genetic maps. We demonstrate the effects of evolutionary
forces on patterns of genetic variation by simulating recently inferred models of human selection and demography. We use
these simulations to show that the demographic model and locus-specific features, such as the proportion of sites under
selection, may have practical implications for estimating the statistical power of sequencing-based rare variant association
tests. In particular, for some phenotype models, there may be higher power to detect rare variant associations in African
populations compared to non-Africans, but power is considerably reduced in regions of the genome with rampant negative
selection. Furthermore, we show that existing methods for simulating large samples based on resampling from a small set of
observed haplotypes fail to recapitulate the distribution of rare variants in the presence of rapid population growth (as has
been observed in several human populations).
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Introduction

Genome-wide association studies have identified many com-
mon loci that contribute to complex heritable phenotypes,
but a large proportion of the heritability remains unexplained
[Manolio et al., 2009; Witte, 2010]. Proposed sources of this
missing heritability include rare variants, environmental in-
teractions, structural variants, common variants of weak ef-
fect, and upward biases in the original estimates of heritabil-
ity. Sequencing studies with large numbers of samples may
offer new opportunities to find the unexplained heritabil-
ity of complex phenotypes, especially rare causal variants as
these sites were mostly absent from and very poorly tagged
by the original array-based genotyping platforms.

Unfortunately, power to detect rare causal variants using
single-marker statistical tests at the genome-wide scale is gen-
erally much lower than is desirable. As a result, researchers
have proposed statistical methods to pool rare variants within
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a putatively causal locus and jointly test for the contribution
of these variants to the phenotype [Hoffmann et al., 2010;
Lee et al., 2012a; Neale et al., 2011; Wu et al., 2011]. Although
these methods all presuppose that low frequency causal sites
have larger effects than high frequency causal sites, there
are few mechanistic reasons for such a phenomenon other
than the action of purifying selection restraining the frequen-
cies of large effect mutations. Moreover, it has been argued
that only those phenotypes with causal sites that are under
selection will have a large fraction of heritability explained
by rare variants [Simons et al., 2014]. Unfortunately, most
rare variant association tools have not directly modeled
selection on causal alleles or used simulations of selection
to test their performance (but see King et al. [2010] and
Price et al. [2010]). Because both natural selection and de-
mography have strong effects on the frequency spectrum of
variant sites, these evolutionary forces may have considerable
impact on the performance of rare variant association tests
[Zuk et al., 2014].

Demography and selection both impact genetic variation
within populations, and population geneticists have devel-
oped a rich literature that models the effects of these forces
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on sampled DNA sequences (for reviews, see Emerson et al.
[2001]; Nielsen [2005]). In general, changes in population
size alter the probability of common ancestry between
two sampled sequences per generation as the genealogical
history is traced backwards in time. Meanwhile, selection acts
to reduce the overall amount of genetic variation by shrinking
the time to common ancestry, and in some cases also changes
the shape of the genealogy. The height and shape of the ge-
nealogical tree relating sequenced chromosomes affect the
total amount of variation in the samples and the frequencies
of the variant sites.

However, only as the scale of sequencing experiments has
increased in recent years it has become possible to apply mod-
els of selection and demography to real data sets. In particular,
it is now possible to use statistical inference techniques to infer
the parameters of demographic/selection models (e.g., pop-
ulation split times, growth rates, and the strength and rate of
selection). Perhaps the most influential such model is known
as the Poisson Random Field [Sawyer and Hartl, 1992], which
has been used to infer both demographic events [Gravel et al.,
2011; Gutenkunst et al., 2009; Tennessen et al., 2012] and se-
lection [Boyko et al., 2008; Bustamante et al., 2001; Torgerson
et al., 2009; Williamson et al., 2005].

As a result of these studies and others, we have rich in-
formation about the recent history of human continental
groups and natural selection acting on human genomic el-
ements such as conserved noncoding sequences and exons.
In general, studies of human demography have found that
human genetic variation is consistent with a population bot-
tleneck as humans moved out of Africa and into Europe and
Asia, and that in the recent past human populations have
expanded rapidly. Studies of selection have found that most
amino acid changes in proteins are weakly deleterious, and
a substantial proportion of changes are strongly deleterious
[Boyko et al., 2008]. Moreover, conserved noncoding ele-
ments have a qualitatively similar distribution of selective
constraints with a lower mean strength of selection [Torger-
son et al., 2009], but there exist ultraconserved noncoding
regions in the human genome with even stronger selective
constraints than coding regions [Katzman et al., 2007].

There has been tremendous recent interest in both popu-
lation genetic inference and association testing, and several
studies connecting the fields have now been published (e.g.,
see Eyre-Walker [2010]; Lohmueller [2014]; Maher et al.
[2012]; Pritchard [2001]; Simons et al. [2014]; Thornton
et al. [2013]). Population genetics has direct implications for
association studies, because the relationship between allele
frequencies and effect sizes determines the power to detect
causal sites. In particular, recent population growth and selec-
tion [Keinan and Clark, 2012; Nelson et al., 2012; Tennessen
et al., 2012] have both increased the proportion of sites at
low frequency and impacted the total number of segregating
sites in a sample. Accounting for the impact of selection and
demography on the frequency spectrum may be crucial to
making sensible estimates of statistical power for association
tests that pool putatively causal rare variants.

Perhaps the most widely used rare variant association test
is the sequence kernel association test, or SKAT [Wu et al.,

2011]. SKAT provides a regression-based framework for rare
variant association testing and has several advantages over
tests that count the prevalence of rare variants in cases and
controls (collectively known as burden tests, e.g., Cohen et al.
[2004]; Li and Leal [2008]; Morgenthaler and Thilly [2007]).
SKAT retains statistical power when rare variants have effects
with opposing directions and provides the machinery for
covariate adjustment. Furthermore, many burden tests can
be treated as special cases of SKAT [Wu et al., 2011]. For
these reasons, we focus on SKAT in this article (specifically
SKAT-O, an optimized version of SKAT [Lee et al., 2012a,b]).

Here, we introduce a simulation tool that incorporates re-
cently inferred population genetic models of natural selection
and demography and accounts for the inferred functional el-
ements and local recombination rate of any desired locus in
the human genome. We demonstrate how local genomic fea-
tures can impact patterns of variation within sampled DNA
sequences, and show that accounting for these patterns may
have practical implications for rare variant association test
power calculations under some phenotype models. We also
consider the impact of linked selection on patterns of genetic
variation and discuss the simulation of phenotypes under
models with selection.

Materials and Methods

sfs_coder: A Python-based interface to SFS_CODE

We built a Python-based front-end to the forward sim-
ulator SFS CODE, which we have named sfs_coder.
sfs_coder is designed to allow users to simulate human
DNA sequences using inferred demographic histories and
human selection models. A typical workflow in sfs_coder
consists of (1) importing the appropriate modules, (2) per-
forming SFS CODE simulations of the desired population
genetic model and/or locus in the human genome, and (3)
analyzing the output of the command or simulating phe-
notype data using the simulated genetic data. The post-
processing analysis tools include locus-by-locus computa-
tion of π, Tajima’s D , Z nS , Watterson’s θ, Fay and Wu’s H ,
and the site frequency spectrum. Each step can be accom-
plished with a few lines of code if the user simulates one of the
models that we have included, but any acceptable SFS CODE
command can be called from sfs_coder. Furthermore, ad-
vanced Python users can use sfs_coder’s object-oriented
framework to write their own analysis tools beyond what we
have provided.

In the next sections, we detail the models that are simulated
in this paper, all of which are immediately accessible through
our free software, except as noted. The software is available at
sfscode.sourceforge.net and complete documentation
is available at uricchio.github.io/sfs_coder.

Simulations of human demography and selection

We simulated human demography and selection for three
human continental groups (African, Asian, and European)
using the parameter estimates of previous studies. All of
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the demographic models we considered include discrete
population size changes, population splits, and continuous
migration [Schaffner et al., 2005]. Two of the models
incorporate the above features with recent exponential
growth in the European and Asian continental groups [Gravel
et al., 2011; Gutenkunst et al., 2009], and the final model
incorporates all of the above features with recent accel-
eration of the growth rate in the African and European
continental groups [Tennessen et al., 2012]. The model of
Schaffner et al. [2005] was simulated with the coalescent sim-
ulator cosi (http://www.broadinstitute.org/�sfs/
cosi/) and is not included in sfs_coder, although the
other models were simulated using the forward simulator
SFS CODE [Hernandez, 2008] and sfs_coder. The param-
eters of the population split times, migration rates, bottle-
necks, and growth rates were obtained from the maximum
likelihood estimates of the relevant publications [Gravel
et al., 2011; Gutenkunst et al., 2009; Tennessen et al., 2012].
Model parameters were scaled as described in the SFS CODE
manual, available at sfscode.sourceforge.net. Sample
SFS CODE command lines for each of the different models
are provided in the Appendix.

In all simulations of selection on coding regions, we used
the distribution of selection coefficients on nonsynonymous
sites that was inferred by Boyko et al. [2008]. For conserved
noncoding elements, we applied the distribution inferred by
Torgerson et al. [2009]. Both are �-distributed, and parame-
ters for the distributions are given in the Appendix.

To summarize the results of our simulations, we plot the
cumulative site frequency spectrum (cSFS). The value of the
cSFS at frequency x is defined as the proportion of variant
sites below or equal to frequency x in our simulations. We also
report the nucleotide diversity,π, for some of our simulations.
π is defined as the mean number of pairwise differences per
base pair between a random pair of chromosomes within the
sample. The values of π that we report are the mean over a
set of independent simulations.

Simulations of genomic elements

sfs_coder allows users to input the coordinates of a hu-
man genomic region and models the local genomic struc-
ture of this region. We model human genomic elements
within sfs_coder as shown in Figure 1. The positions
of exons were extracted from GENCODE v14 [Harrow
et al., 2012]. The positions of conserved noncoding ele-
ments were inferred by Siepel et al. [2005] and recombi-
nation rates by International HapMap Consortium et al.
[2007]. Data sources for each of these elements are included in
sfs_coder.

Furthermore, we allow users to specify one of several
recently inferred models of human demography, namely,
those of Gravel et al. [2011], Gutenkunst et al. [2009], and
Tennessen et al. [2012], simultaneous to simulating complex
genomic structure. Both the exonic regions and conserved
noncoding regions are under selection in the simulations,
with selection coefficients drawn from distributions that were
inferred specifically for these regions by recent studies [Boyko
et al., 2008; Torgerson et al., 2009].

Haplotype resampling with Hapgen2

Haplotype resampling methods provide an efficient mech-
anism for simulating large samples based on an existing
reference panel, and constitute an alternative to forward sim-
ulations of DNA sequences. Such methods include Hapgen2
[Su et al., 2011] and others, and are often applied based on the
deep catalog of variation represented by the HapMap project
[International HapMap Consortium et al., 2007] or the 1000
Genomes Project [1000 Genomes Project Consortium et al.,
2012]. Haplotype resampling has the demonstrated ability
to recapitulate the haplotype and genetic variation of large
samples when the population size remains constant, but it is
not clear that they will perform well in cases of rapid popu-
lation growth. Recent studies have suggested that the excess

Figure 1. A model of human genomic sequences that incorporates selection on exons and conserved noncoding (CNC) elements (with separate
distributions of selection coefficients) and local recombination rates. Selection coefficients on exons and conserved noncoding elements were
taken from Boyko et al. [2008] and Torgerson et al. [2009], respectively. The positions of the conserved noncoding elements were inferred by Siepel
et al. [2005], and the recombination map was inferred by International HapMap Consortium et al. [2007]
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of rare variants associated with recent growth may only be
detectable with very large sample sizes [Keinan and Clark,
2012; Tennessen et al., 2012].

We simulated 30 unlinked 10Mb regions of the hu-
man genome under the European demographic model
of Tennessen et al. [2012] and sampled 104 chromo-
somes using SFS CODE. Each 10 Mb region was based on
chr15:59200000-69200000, and incorporated natural selec-
tion on all exons and conserved noncoding regions, as well
as the genetic map inferred by the HapMap project [Interna-
tional HapMap Consortium et al., 2007]. We randomly chose
100 chromosomes from this simulation to form a reference
panel. We then used Hapgen2 to resample this reference panel
up to a larger sample size of 103, 5 × 103, or 104 chromosomes
and compared the distributions of derived allele frequencies
(DAF) at each sample size to a random subsample of equiv-
alent size from SFS CODE simulations.

Choosing a region under strong linked selection

We performed simulations of a genomic region under
strong linked selection using sfs_coder. To select a can-
didate region for these simulations, we computed the density
of phastCons elements [Siepel et al., 2005] and total genetic
distance separately in 1 Mb sliding windows (10 kb sliding
distance) across the human genome (hg19). We then took the
intersect of those windows that were in the top 10% of the dis-
tribution of phastCons (phastConsElements46wayPlacental)
density and the bottom 10% of the distribution of recombina-
tion distance (HapMapII GRCh37). From that intersection,
we extracted windows that had a mean B value less than 25
(indicating very strong background selection [McVicker et al.,
2009]). We found 931 transcripts (GENCODE version 14)
that fell within these regions. We then picked chr3:50320000-
50350000 for our simulations of selection and power because
it had among the highest densities of transcripts within this
set of regions. Our background selection simulations incor-
porate the 2 Mb surrounding this region (chr3:49335000-
51335000). This region also contains 13 Genome-Wide As-
sociation Study loci in the NHGRI GWAS Catalog.

Simulations of phenotypes and the power of SKAT-O

We followed Wu et al. [2011] in simulating phenotypes
and testing the power of the rare variant association method
SKAT-O. Effect sizes β(x) of causal variants were taken as
β(x) = –0.4 log10(x), where x is the minor allele frequency.
Thus, lower frequency sites have larger magnitude effects.
Among variants under 3% frequency, 5% were taken to be
causal. Phenotypes, Y, of each sampled individual were then
generated as

Y = X 1 + X 2 + βG + ε (1)

where X 1 is a standard normal covariate, X 2 is a dichotomous
covariate that takes the value 0 with probability 0.5 and the
value 1 otherwise, and ε is a standard normal random variable
(not taken as a covariate). β is the vector of effect sizes and G

represents the genotypes. This phenotype model is included
in sfs_coder, as are the models of Eyre-Walker [2010] and
Simons et al. [2014], which map selection coefficients, rather
than allele frequencies, to effect sizes. Our software also allows
the user to set the desired genetic variance explained by the
causal sequence for each of the models.

For each of the demographic models considered in our
power calculations, we generated 250 independent simula-
tions with the relevant sample size and selective constraint
for the human genomic locus at chromosome 3, hg19 posi-
tions 50320000-50350000. For each simulation, we randomly
selected causal loci and generated phenotypes as described
above. We resampled causal sites from each genetic simula-
tion four times, for a total of 103 simulations of phenotypes
for each demographic model. We then ran SKAT-O and com-
puted the fraction of results with P-values under 10–6.

Depending on the exact sequencing experiment per-
formed, the number of statistical tests might range from ap-
proximately 2 × 104 (all genes) to 105 (all 30 kb sequences in
the genome), so Bonferroni corrected significance thresholds
may range from 5 × 10–7 to 2.5 × 10–6. Here we have chosen
10–6, but we emphasize that the trends in power as a function
of sample size, selection, and demography are not dependent
on this choice.

We obtained the SKAT R-package from http://www.
hsph.harvard.edu/skat/download/.

Results

Demography, sample size, and selection impact rare
variants

The results of rare variant association tests are contingent
on the joint distribution of variant frequencies and effect
sizes. In this section, we examine the effects of selection and
demography on the simulated frequency spectrum through
simulations.

We simulated human demography and selection under
several previously inferred models [Gravel et al., 2011;
Gutenkunst et al., 2009; Schaffner et al., 2005; Tennessen
et al., 2012]. In Figure 2, we plot the simulated cumulative
site frequency spectra of each of the three demographic mod-
els that we considered. Consistent with population genetic
theory [Keinan and Clark, 2012] (and the data that was used
to infer the models), exponential or two-phase exponential
growth results in a large excess of rare variants relative to
a constant population size model (gray dashed line). Fur-
thermore, when sample size is large (5 × 103 chromosomes,
lower panels), the two phase model of exponential growth
[Tennessen et al., 2012] generates many more low frequency
variants than the other growth models.

Our simulations also included natural selection on non-
synonymous sites [Boyko et al., 2008]. Negative selection
tends to constrain variants to lower frequencies, so the site
frequency spectra of nonsynonymous sites are shifted toward
the left (Fig. 2, dotted lines). Note that we do not include
nonsynonymous sites for the model of Schaffner et al. [2005]
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Figure 2. Simulated cumulative site frequency spectra in three human continental groups under several recently inferred demographic models.
Sample size is 103 chromosomes in the top panels and 5 × 103 chromosomes in the lower panels. Note that the model of Tennessen et al. [2012]
did not infer demography of the Asian continental group, so we do not plot a curve for this population. However, the Asian continental group is
included in the Tennessen et al. [2012] simulations. Each curve was calculated using 103 independent simulations of 5 × 103 base pairs each. The
gray dashed curve represents the analytical expectation based on the standard neutral model and is not the result of simulations. (SNM: standard
neutral model, AFR: African population, EUR: European population, ASN: Asian population, NS: nonsynonymous, SYN: synonymous.)

in Figure 2 because the coalescent simulator cosi does not
allow for the introduction of natural selection.

Haplotype resampling underestimates the number of rare
variants in large samples

As an alternative to forward simulations, investigators
might opt to resample haplotypes from a previously se-
quenced sample. In this section, we test whether a haplotype
resampling method (also known as a “sideways” simulation,
[Chen et al., 2014]) is able to recapitulate the extent of rare
variation expected in large samples when based on a modest
reference panel of 100 chromosomes in the context of rapid
population growth.

We find that under the demographic model of Tennessen
et al. [2012], Hapgen2 [Su et al., 2011] does a poor job of reca-
pitulating the extent of rare variation expected at large sample
sizes. In Figure 3A, we show a quantile-quantile (QQ) plot of
the DAF distribution inferred from Hapgen2 versus the DAF
distribution expected by SFS CODE under the Tennessen
et al. [2012] European demographic model. If Hapgen2
were able to recapitulate the underlying DAF distribution
Figure 3A would follow the diagonal dotted line. However,
we find that as the sample size increases, the extent to which
Hapgen2 underestimates the fraction of rare variants

increases (indicated by curves deviating above the diago-
nal). In Figure 3B we look closely at the expected (based on
SFS CODE) and inferred (based on Hapgen2) frequencies of
each SNP observed in the sample of 104 chromosomes using
a scatter plot. We do not expect points to fall along the di-
agonal in this case because of the resampling procedure, but
we would expect the points to be symmetrically distributed
about the diagonal (blue curve). Instead, we find that Hap-
gen2 DAF frequencies are skewed toward higher frequencies
for rare variants. This is demonstrated using a loess smooth-
ing (red curve). The loess curve shows that the Hapgen2 DAF
may be strongly biased by the reference panel size.

Power estimates may be impacted by local genomic
context and demography

Forward simulations allow investigators to model the
effects of demography and selection on sampled DNA
sequences [Peng et al., 2014]. Because recombination and
natural selection jointly impact the number of segregating
sites and the proportion of sites at low frequency, it may
be important to accurately account for these features when
performing power calculations. Moreover, in the case of a tar-
geted resequencing study, it is desirable to model the genomic
architecture of the target locus directly.
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Figure 3. Generating large samples by haplotype resampling results in a deficiency of rare variants in the presence of population growth. For
this plot we simulated 104 chromosomes from 30 unlinked 10 Mb regions of the human genome (300 Mb total) in SFS_CODE under the Tennessen
et al. [2012] demographic model discussed in the text. We then used 100 chromosomes as a reference panel in Hapgen2 to generate a much
larger sample (as indicated in the legend). (A) Shows a quantile–quantile plot of the derived allele frequencies (DAF) for chromosomes simulated
using Hapgen2 versus the expected DAF distribution from SFS_CODE (with sample sizes indicated in the legend). (B) Shows a scatter plot of the
frequencies of each SNP inferred by Hapgen2 compared to SFS_CODE for a sample of size 104 chromosomes. Both figures demonstrate that
Hapgen2 fails to recapitulate the extent of rare variation expected under rapid population growth, particularly for large sample sizes.

We tested the performance of the method SKAT-O with
our simulations of demography and selection [Lee et al.,
2012a]. We simulated 30 kb of sequence from chromosome 3
(hg19 coordinates 50320000-50350000, which is a region un-
der strong selection, see Methods), under two different de-
mographic models [Gutenkunst et al., 2009; Tennessen et al.,
2012], with and without selection on coding and conserved
noncoding elements. Selection coefficients were drawn from
the distributions inferred by Boyko et al. [2008] for coding
regions and Torgerson et al. [2009] for conserved noncod-
ing regions. We also ran simulations where the entire 30 kb
region was treated as a single gene (i.e., ignoring the local
structure of conserved elements and allowing selection on all
nonsynonymous sites).

Following Wu et al. [2011], we generated phenotypes by al-
lowing 5% of the sampled variants under 3% frequency to be
causal (see Methods). We ran SKAT-O on the phenotypes and
genotypes from the African and European continental groups
and computed the fraction of simulations with P-values un-
der 10–6. Selection impacts power by increasing the fraction
of sites at low frequency and decreasing the overall level of
genetic variation. The net result is a loss of power. When the
entire locus is under selection, genetic variation is pushed
to even lower levels and the site frequency spectrum is fur-
ther shifted to rare alleles, which substantially reduces power.
Note that we have not forced the genetic variance explained
by the test sequence to be the same between the neutral and
selected models, but this is precisely the point of this experi-
ment. Because of reduced levels of overall variation, regions
under direct selection must have larger effect sizes in order to

explain an equal proportion of the genetic variance as neutral
regions and reach the same power as neutral sequences.

In general, we observe higher power in the African conti-
nental group for this phenotype model (Fig. 4, with > 80%
power for a sample size of 5 × 103), which is in line with
the overall higher level of genetic diversity within Africans
(Fig. 5). We also observe a subtle difference in power be-
tween the demographic models of Tennessen et al. [2012]
(which includes rapid growth of the African population) and
Gutenkunst et al. [2009] (which includes only an ancient ex-
pansion in the African population) in the African population.

Figure 4 shows that the effect of selection on power for this
particular phenotype model ranges from ≈ 5 – 50% depend-
ing on the sample size and demographic model. However, we
emphasize that these results should not be interpreted as gen-
eral effects of human selection and demography on statistical
power, but rather a reflection of a specific phenotype model
commonly used in the literature [Wu et al., 2011]. In gen-
eral, the effects of recent selection and demography on power
may be more or less severe depending on sample size and the
relationship between effect sizes and allele frequency, which
is still a matter of some debate. One of the main advantages
of our simulation method over other methods for estimating
power is that the selection strength operating on every variant
in the simulation is known. In two of the phenotype models
included in sfs_coder, we use selection coefficients rather
than allele frequencies to draw effect sizes when simulating
phenotypes. In the Discussion section we further deliberate
on the simulation of phenotypes. Here we have examined
direct selection, but linked selection may also play a role in
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Figure 4. Power of SKAT-O at the α = 10−6 level for two different models of demography with and without selection, for different sample sizes
N . We applied both a locus specific model of selection (which applies separate distributions of selection coefficients to conserved non-coding
elements and exons), and a model that treats the entire 30 kb locus as a single gene. All results are for a region on chromosome 3, hg19 coordinates
50320000-50350000.

No Linked Selection
Background Selection

1.0 x 10−4

4.0 x 10−4

7.0 x 10−4

1.0 x 10−3

AFR EUR ASN

Figure 5. We calculated the pairwise nucleotide diversity π for for
the locus at chr3:50320000-50350000, for simulations with and without
background selection and the demographic model of Gutenkunst et al.
[2009]. The simulations without background selection simulated only this
locus, although the background selection simulations also included 1
Mb of flanking sequence on either side of the locus of interest. Note,
sites in the flanking 1 Mb are not included in the diversity calculations.

altering patterns of variation and affecting power calcula-
tions, as we address in the next section.

The impact of linked selection

Patterns of genetic diversity at neutral sites can be altered
via physical linkage to sites under selection [Charlesworth
et al., 1993; Smith and Haigh, 1974]. The effects of linked
negative selection (known as “background selection”) on
variation in humans have been well studied [McVicker et al.,
2009]. Sites that are closely linked to deleterious variants
are also prohibited from increasing in frequency, resulting
in a local decrease in genetic diversity. The mean number
of variants segregating at such loci is lower than in regions

that are unlinked to selected loci. Background selection also
has an effect on the shape of the site frequency spectrum
(i.e., the proportion of variant sites at a given frequency)
[Nicolaisen and Desai, 2013; Zeng and Charlesworth, 2011],
but this effect is often subtle.

We ran 250 simulations incorporating the demographic
model of Gutenkunst et al. [2009] for a 2 Mb region that
is centered on the 30 kb region considered in Figure 4
(chr3:50320000-50350000). This locus is expected to have
among the strongest effects of background selection in the
human genome under the model of McVicker et al. [2009].
All inferred exons and conserved noncoding elements within
this region were simulated. In Figure 5, we show the mean
observed nucleotide diversity π for these simulations as com-
pared to simulations we used for Figure 4, which did not
include the flanking sequences (but did incorporate selection
on the 30 Kb central region). The overall level of diversity
is strongly reduced in the background selection simulations.
Additionally, there is a very small shift in the site frequency
spectrum toward rare variants in the background selection
simulations (data not shown).

We used these background selection simulations to com-
pute power of SKAT-O with the same phenotype model that
we considered in Figure 4. For a sample size of 2,000 indi-
viduals, power in Europeans drops from 44% for simulations
without background selection to 38% when background se-
lection is included, and power in Africans drops from 67% to
57%, due to the overall reduction in genetic diversity. Note
that this reduction in overall diversity also implies a reduction
in variance explained by the test sequence under the pheno-
type model of Wu et al. [2011], as discussed in the previous
section.

Discussion

Simulations play an increasingly prominent role in sta-
tistical and population genetics because they can be used
to generate DNA sequence data under models that are too
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complex to handle analytically. In statistical genetics, simula-
tions have been used to generate sequence data under various
demographic scenarios and to assess the performance of var-
ious statistical tests of association in the presence of complex
demographics (e.g., see Wu et al. [2011]). However, natural
selection also impacts patterns of genetic variation and thus
might influence conclusions about statistical power.

Here, we introduced a new simulation tool (sfs_coder)
that allows users to model human demography, selection, re-
combination, and genomic elements (exons and conserved
noncoding sequences) for any locus in the human genome.
Both selection and demography alter the frequency spec-
trum of variant sites and the number of variant sites within
a sample of sequenced chromosomes. Jointly modeling these
evolutionary forces may prove to be an important step for-
ward for the use of simulations in assessing the performance
of tests of statistical association [King et al., 2010], and in-
deed we showed here that natural selection and demography
can impact the power of rare variant association tests under
some phenotype models.

As an alternative to forward simulations of DNA sequences,
researchers have also proposed “sideways” simulations [Chen
et al., 2014]. These simulations use a reference panel of se-
quenced (or genotyped) chromosomes to generate new chro-
mosomes under the model of Li and Stephens [2003]. The
advantage of these methods is that they rely on observed
genetic data, so the impact of natural selection and demog-
raphy on the genealogy and the sampled genetic diversity are
present in the reference panel and do not need to be directly
modeled. However, here we showed that these methods do
not recapitulate expected patterns of variation for rare vari-
ants when the population has experienced recent growth and
the size of the reference panel is much smaller than the desired
sample size.

Although it is straightforward to use forward simulation
tools such as sfs_coder to model the effects of selection
and demography on DNA sequences, an important caveat of
forward simulation is model misspecification. Here, we have
tapped into the deep population genetics literature to incor-
porate recently inferred models, but these models should not
be considered absolute truth. In particular, in future studies
with larger sample sizes, considerable refinement could be
made in the estimates of recent human growth as well as the
strength of selective constraint. For example, there remains
some debate about the rate of recent human growth and its
influence on DNA sequences. One study of neutral genomic
regions did not find support for recent acceleration in the
growth rate [Gazave et al., 2014], in contrast to Tennessen
et al. [2012]. Furthermore, more diverse annotations of ge-
nomic elements than we have considered here may allow for
more precise distributions of selection coefficients for each
locus in the genome.

Another important consideration when performing for-
ward simulations is the choice of simulation parame-
ters, especially sequence length and population size. Larger
sequence lengths and population sizes can dramatically in-
crease the computation time of forward simulations, so it
is advantageous to pick these variables to be as small as

possible [Hoggart et al., 2007]. However, we showed here
that ignoring the impact of linked negative selection can alter
patterns of simulated diversity and potentially affect power
calculations. Furthermore, for some evolutionary models the
simulated population size can also bias simulated patterns of
genetic diversity if it is chosen to be too small [Uricchio and
Hernandez, 2014]. Some further work is needed to explore
appropriate choices of sequence length and population size
for forward simulations of background selection and demog-
raphy, and we have left these choices up to the end-user in
our software sfs_coder.

Applications of simulations abound in the genetics liter-
ature, but one use that is of particular interest to statistical
geneticists is the estimation of statistical power. For rare vari-
ant association tests (or any test of association that pools
putatively causal variants), power is a function of the joint
distribution of allele frequencies and effect sizes. Here, we
showed that power is higher in Africans as compared to non-
Africans for a simple phenotype model that asserts a loga-
rithmic increase in effect size as allele frequency decreases. A
side-effect of this phenotype model is that populations with
more genetic variation have a greater proportion of vari-
ance explained by the test sequence. For a real phenotype,
this may or may not hold, because it is not necessarily true
that (1) effect sizes will be the same in two different pop-
ulations or (2) the environmental variance is the same in
two different populations. Exactly how the joint distribu-
tion of effect sizes and allele frequencies differ between pop-
ulations may depend intimately on the action of selection
on causal sites in each population and recent demographic
history.

Generally, the distribution of effect sizes is not known, so
arbitrary distributions have been proposed in previous work
(and were applied here). These distributions assign larger ef-
fect sizes to rare variants than common causal alleles, but they
do not necessarily have an obvious interpretation in terms of
the strength and rate of selection in the human genome. Rare
variants are not likely to contribute substantially to the vari-
ance observed in complex phenotypes unless causal sites are
under selection [Simons et al., 2014], so the interpretability
of power studies could be improved substantially by perform-
ing assessments with genetic models that include selection. In
future studies it will be advantageous to simulate phenotypes
where the effect sizes are modeled directly based on the selec-
tion coefficients of the causal sites, reminiscent of the work
of Eyre-Walker [2010]. Tools such as sfs_coder should en-
able this work as human geneticists push further into the age
of deep sequencing, large sample sizes, and complex genetic
architectures.
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Appendix
We used the default parameter settings of the model “best-

fit,” included in the cosi distribution, to simulate the model
of Schaffner et al. [2005].

The following are representative command lines for our
SFS CODE simulations.

Gutenkunst et al. [2009]: sfs_code 3 10 -N 7000
-n 50 50 0 -A -L 1 100 -t 0.001 -r 0.001 -TS
0.219178 0 1 -TS 0.544658 1 2 -TE 0.60274 -Td
0 P 0 1.68493 -Td 0.219178 P 1 0.170732 -Td
0.544658 P 1 0.47619 -Tg 0.544658 P 1 58.4
-Td 0.544658 P 2 0.242857 -Tg 0.544658 P 2
80.3 -Tm 0.219178 P 0 1 6.15 -Tm 0.219178 P 1
0 0.5 -Tm 0.544658 L 0.738 0.4674 0.06 0.192
0.01938 0.09792

Gravel et al. [2011]: sfs_code 3 10 -N 7000 -n
50 50 0 -A -L 1 100 -t 0.001 -r 0.001 -TS
0.265753 0 1 -TS 0.342466 1 2 -TE 0.405479
-Td 0 P 0 1.982738 -Td 0.265753 P 1 0.128575
-Td 0.342466 P 1 0.554541 -Tg 0.342466 P 1
55.48 -Td 0.342466 P 2 0.29554 -Tg 0.342466
P 2 70.08 -Tm 0.265753 P 0 1 4.3422 -Tm
0.265753 P 1 0 0.5583 -Tm 0.342466 L 0.7237
0.225794 0.09305 0.115754 0.00858 0.03421

Tennessen et al. [2012]: sfs_code 3 10 -N 7000
-n 50 50 0 -A -L 1 100 -t 0.001 -r 0.001 -TS
0.265753 0 1 -TS 0.342466 1 2 -TE 0.405479
-Td 0 P 0 1.982738 -Td 0.265753 P 1 0.128575
-Td 0.342466 P 1 0.554541 -Tg 0.342466 P 1
44.822 -Td 0.342466 P 2 0.29554 -Tg 0.342466
P 2 70.08 -Tm 0.265753 P 0 1 4.3422 -Tm
0.265753 P 1 0 0.5583 -Tm 0.342466 L 0.7237
0.225794 0.09305 0.115754 0.00858 0.03421 -Tg
0.391465 P 0 242.36 -Tg 0.391465 P 1 284.7

We rescaled the ancestral population size to N = 5 × 103

(as opposed to 7 × 103 above) for computational feasibility
for our simulations. We applied the distribution of selec-
tion coefficients of Boyko et al. [2008] to coding loci, which
is given by the flag -W 2 0 0 0 0.184 0.00040244. For
conserved non-coding elements, we applied the distribu-
tion of Torgerson et al. [2009], which is given by -W 2
0 0 0 0.0415 0.0015625. See the SFS CODE manual at
sfscode.sourceforge.net for more information.
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