
Genetic Epidemiology 36 : 312–319 (2012)

Accurate Imputation of Rare and Common Variants in a Founder
Population From a Small Number of Sequenced Individuals
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Advances in DNA sequencing technologies have greatly facilitated the discovery of rare genetic variants in the human genome,
many of which may contribute to common disease risk. However, evaluating their individual or even collective effects on
disease risk requires very large sample sizes, which involves study designs that are often prohibitively expensive. We present
an alternative approach for determining genotypes in large numbers of individuals for all variants discovered in the sequence
of relatively few individuals. Specifically, we developed a new imputation algorithm that utilizes whole-exome sequencing
data from 25 members of the South Dakota Hutterite population, and genome-wide single nucleotide polymorphism (SNP)
genotypes from >1,400 individuals from the same founder population. The algorithm relies on identity-by-descent sharing
of phased haplotypes, a different strategy than the linkage disequilibrium methods found in most imputation algorithms.
We imputed genotypes discovered in the sequence data to on average ∼77% of chromosomes among the 1,400 individuals.
Median R2 between imputed and directly genotyped data was >0.99. As expected, many variants that are vanishingly rare
in European populations have risen to larger frequencies in the founder population and would be amenable to single-SNP
analyses. Genet. Epidemiol. 36:312–319, 2012. C© 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Most common diseases are largely heritable, yet much
of the genetic variation that contributes to disease risk re-
mains unknown [Eichler et al., 2010]. Although genome-
wide association studies (GWAS) have successfully un-
covered many common human genomic variants that im-
pact disease risk, it is now clear that new approaches
must be developed to find the remaining risk-associated
variation. Under some common models of disease risk,
rare genetic variation plays a significant role [Clarke and
Cooper, 2010; Manolio et al., 2009]. Moreover, due to the
rapidly falling DNA sequencing prices, the rate of discov-
ery of rare variants in the human genome has recently ac-
celerated. However, it can be difficult to test the contri-
bution of individual rare variants to disease risk, even in
association studies of thousands of individuals. In order
to gain sufficient statistical power for these tests, the vari-
ants must have large effect sizes or they must be grouped
together, often in nonobvious ways [Oexle, 2010].

Founder populations offer an alternative to association
studies of unrelated subjects or families [Lander and Schork,
1994; Ober and Cox, 1998; Peltonen et al., 2000]. In a founder

population, each individual’s genome is composed of frag-
ments of a subset of the genetic material introduced by a
relatively small number of founder individuals. Although
the overall amount of variation in a founder population is
small compared to nonfounder populations, some variants
that are rare in the general population (and potentially dele-
terious) occur at higher frequencies in founder populations
due to the effects of random genetic drift [Lowe et al., 2009].
It is now possible in principle to find such variants by DNA
sequencing, but despite the falling sequencing prices, deep
sequencing at the whole-exome (or whole-genome) level in
large numbers of subjects remains prohibitively expensive
for many academic research groups. Imputation of geno-
types for sequenced variants discovered in a small number
of individuals to a larger sample is an appealing alternative.
Indeed, imputation of sequenced variants was recently used
to find a causal variant for sick sinus syndrome in the Ice-
landic population [Holm et al., 2011].

Imputation of genotypes in both related and unrelated
individuals has been performed successfully for many
years (see [Li et al., 2009]). Imputation algorithms in
unrelated individuals typically rely on genotype train-
ing data from a large number of unrelated individuals
[Li et al. 2010]. Family-based imputation approaches
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identify regions of identity-by-descent (IBD) sharing, and
some linkage packages have built-in support for imputa-
tion (e.g., MERLIN [Abecasis et al., 2002]), but there are
limitations on maximum family size and minimum relat-
edness of individuals that can be analyzed by these ap-
proaches. Imputation algorithms for unrelated individuals
take advantage of the correlation structure (linkage disequi-
librium, LD) among SNPs in the same region, structure that
is inferred from a reference panel [Browning and Brown-
ing, 2009; Li et al., 2010; Marchini et al., 2007; Servin and
Stephens, 2007].

Founder populations offer advantages for imputation
studies. First, founder populations have less genetic vari-
ation than nonfounder populations, so less input data (e.g.,
fewer exome-sequenced individuals) are needed to im-
pute genotypes to many individuals. Second, many founder
populations have maintained detailed genealogical records
(e.g., [Steinberg et al., 1967]), which can be used to calculate
accurate kinship coefficients that confer additional infor-
mation about the global likelihood of IBD between all pairs
of individuals (e.g., [Abney, 2009]). Dense genotype infor-
mation provided by Affymetrix or Illumina arrays can be
used in concert with kinship coefficients to calculate local
IBD-sharing relationships, which can be leveraged for the
purposes of imputation.

We developed an imputation algorithm that takes advan-
tage of the relatedness among members of the Hutterite
population to assign genotypes for sequenced variants dis-
covered in only 25 Hutterites to more than 1,400 Hutterites
with genome-wide SNP genotypes. Our method first de-
termines phase, and then locally computes IBD near vari-
ants discovered in the exome sequences, and finally imputes
genotypes to the remaining individuals. We show that we
can phase and impute genotypes discovered through ex-
ome sequencing to members of this founder population
with high accuracy and low missing information. We show
that a large proportion of the exonic variants that are not
present in dbSNP 129 and, therefore, likely to be rare in the
general population, occur at larger frequencies in the Hut-
terites. This approach can be used for subsequent GWAS or
for the global detection of IBD. These algorithms are ideally
suited to founder populations, particularly those with large,
complex pedigrees.

MATERIALS AND METHODS

HUTTERITES
The Hutterites are a religious isolate that originated in

central Europe in the 16th century; after a series of mi-
grations and population bottlenecks, they settled in the
United States in the 1870s, at which time their popula-
tion size increased exponentially [Hostetler, 1974]. Today
there are >40,000 Hutterites living on communal farms
in the northern plains of the United States and west-
ern Canada, all of whom descended from <90 founders
[Martin, 1970]. The Hutterites living in South Dakota, the
subjects of our genetic studies, are descendants of just 64 of
the 90 founders [Ober et al., 2001]. The imputation studies
presented here focused on 1,414 South Dakota Hutterites
who are related to each other in a 3,672 person pedigree. We
used Affymetrix arrays (500k, 5.0 and 6.0) to measure geno-
types at the loci of 246,057 common bi-allelic SNPs in these
Hutterites as previously described [Ober et al., 2008; Ober

et al., 2009]. This set of common bi-allelic SNPs is referred
to as “GWAS SNPs” herein.

Twenty-five Hutterites were selected from among the
1,414 genotyped individuals for whole-exome sequencing
to maximize the number of genotyped descendents and
minimize the pairwise relatedness between the 25 subjects.
Whole-exome sequencing was performed as previously de-
scribed [Caliskan et al., 2011].

PHASING
Our phasing algorithm draws on ideas from conventional

phasing approaches, and the long-range phasing algorithm
described in Kong et al. [2008], in which surrogate parents
(i.e., relatives of the proband through either the mother or
the father) are used to determine phase. Surrogates are rel-
atives who are identical-by-state (IBS) with the proband at
1,000 consecutive SNPs, which implies IBD. Phase informa-
tion in the surrogates is then used to phase the proband.
Kong et al. report that this method provides nearly com-
plete phase information among genotyped individuals in
the Icelandic population.

Although a 1,000 SNP IBS window provides strong ev-
idence of IBD, this method is not sensitive to regions of
IBD composed of fewer SNPs. Furthermore, in an inbred
pedigree, classification of surrogates as relatives of only the
mother or only the father is often not possible as both par-
ents can be related to the proposed surrogate. This clas-
sification is especially difficult in the absence of parental
genotype information. To circumvent this requirement, we
developed a simple local phasing tool that first exhaustively
uses nuclear family information to phase, and then uses in-
formation in more distant relatives to probabilistically cal-
culate phase. Importantly, this approach does not require
the classification of surrogate parents as maternal or pater-
nal relatives.

Our phasing algorithm is executed simultaneously on all
genotyped members of the Hutterite pedigree, and each
small chromosomal region (100 SNPs herein) is phased in-
dependently. SNPs cannot be phased by Mendelian trans-
mission within a trio when both parents and the proband
are heterozygous or when the proband is heterozygous and
one or both parents have missing genotype information.
However, in cases where a nuclear family has two geno-
typed children, the proportion of SNPs at which both par-
ents and all children are heterozygous reduces by a factor of
2 compared to a family with only one genotyped child. As
more members of a family (such as other children, grandpar-
ents, grandchildren) are genotyped, the number of instances
where all individuals are heterozygous at a particular SNP
becomes very small. This is particularly useful for phasing
in the Hutterites, in whom the mean number of genotyped
sibs is approximately four and grandparents or grandchil-
dren are available in many cases. We exploit these features of
the pedigree to phase families along direct lines of descent.

We first exhaustively apply single-SNP Mendelian logic
to phase as many SNPs as possible. After this step is com-
pleted, we use phase information of SNPs proximal to an
unphased SNP of interest to compare partially phased hap-
lotypes among family members. If a recombination has
not occurred within a nuclear family near this locus, then
one or more pairs of family members will share a haplo-
type at this locus IBD. We search for pairs of individuals
displaying local IBD sharing within the family, and we pass
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any phase information that is complete in one individual to
the other individual.

In practice, the method described above cannot be applied
near sites of recombination, which can be detected in nu-
clear families when comparing parental (partially phased)
haplotypes to the haplotypes of their offspring. A recombi-
nation is detected when contiguous SNPs that are heterozy-
gous in the parent (and hence differentiate the parent’s two
chromosomes) support the inheritance of one of the parent’s
chromosomes proximal to a given SNP, and the inheritance
of the other of the parent’s chromosomes distal to the SNP
in the offspring. When a recombination is detected between
a parent and offspring, we do not use the partial haplotype-
matching technique described above. Instead, we use the
other parent’s phase information (when available) to phase
the proband. This is a practical solution because it is rare for
a recombination event to occur in both parents in the same
small region of the genome.

For genotyped Hutterites who lack genotype information
for any parents or children, or who lack phase information at
5% or more SNPs after application of the above methods, the
algorithm then searches for surrogate parents who share a
haplotype with the proband in a manner similar to that used
by Kong et al. If the proband and a phased relative share
a haplotype IBD with high confidence (discussed below),
we use the phase information in the relative to phase the
proband.

IBD-SHARING CALCULATION
IBD-sharing likelihoods can be calculated from either

phased or unphased genotype data, but phased data are
preferred because breakpoints in IBD sharing are more eas-
ily determined from phased data. While this is not critical
when comparing long regions of IBD (1,000 SNPs, for ex-
ample), breakpoint uncertainty can greatly change the rel-
ative length of short IBD tracts. It is also simpler to distin-
guish between IBD = 2 and IBD = 1 segments with phased
data, which is critical for inbred populations where the
IBD = 2 configuration is possible between even distant
relatives.

We perform a simple calculation that approximates the
probability of IBD for two IBS haplotypes of any length. We
first prune for LD in the region using a greedy strategy that
leaves only SNPs with pairwise r2 < 0.3 for all pairs. We
then treat all remaining SNPs as probabilistically indepen-
dent. We compare each remaining nonphased chromosomal
segment to phase information from relatives who are >98%
phased in that region by the previous methods. We first
search for uninterrupted regions of IBS between pairs of
individuals. If such a region is discovered, we approximate
the probability of IBD in the following manner:

P(IBD = 1 | IBS)

= P(IBS | IBD = 1)P(IBD = 1)
P(IBS | IBD = 0)P(IBD = 0)+P(IBS | IBD = 1)P(IBD = 1) , (1)

where P(IBD = 1) and P(IBD = 0) are given by the kinship
coefficient K and (1 − K), respectively. We calculate kin-
ship coefficients from the Hutterite pedigree [Abney, 2009].
P(IBS | IBD = 1) is 1 (assuming low genotyping error and
mutation rate). P(IBS | IBD = 0) is given by the product of
the (assumed independent) allele frequencies in the region
of the locus of interest. Allele frequencies are estimated us-

ing the set of 1,414 genotyped Hutterites. This calculation
is similar in form for unphased data (but the denominator
must be summed over all three possible states, IBD = 0, IBD
= 1, IBD = 2) [Purcell et al., 2007].

Our calculation is an approximation to the true proba-
bility because there is some remaining LD after pruning
the SNPs in the region to be independent, and because we
use estimated allele frequencies. We require that this ap-
proximation exceed a threshold in order to assign local IBD
relationships. This threshold is a tuning parameter in the
phasing algorithm. We set this threshold to 0.95, which
is low compared to default values of analogous param-
eters of programs that focus on nonfounder populations,
such as Beagle’s fastIBD method [Browning and Browning,
2011]. This threshold would likely result in an extremely
high false positive rate if our method was naively applied
to a nonfounder population (or a founder population with
more than the 64 Hutterite founders). However, because the
Hutterites in our studies are descended from 64 founders,
there are at most 128 different possible chromosomes at
any one locus. Many of the founder haplotypes were elim-
inated by random processes, especially early in the his-
tory of the population following a bottleneck. Therefore,
it is likely that even most short IBS tracts are IBD in the
Hutterites.

IMPUTATION
Imputation is performed on a SNP by SNP basis for each

SNP present in the exome sequences. Each of the 25 exome-
sequenced individuals’ genotypes at each SNP is filtered by
phred [Ewing and Green, 1998] based quality score (>90)
and depth of coverage (≥16×); passing calls are then used
as input to the imputation algorithm.

Our imputation algorithm requires phasing of the se-
quenced variants to place each allele onto a local haplotype.
Once an allele is placed into the context of a local haplo-
type, it is possible to compare phased haplotypes directly
between relatives. Therefore, we first phase the 25 exome-
sequenced individuals, who were also genotyped for the
GWAS SNPs. We assign each homozygous individual’s al-
lele to local haplotypes defined by the genotypes of nearby
GWAS SNPs for that individual. Genotypes of heterozy-
gous individuals in the sequencing sample are phased if
they share one local haplotype IBD with a phased individ-
ual. The approximate probability of pairwise local IBD is
again calculated with the equation given above. If there is
a high likelihood of IBD between an unphased, sequenced
individual and a phased, sequenced individual, we then
phase the heterozygous individual at this SNP of interest.

After phasing as many of the sequenced individuals
as possible, we repeat the pairwise IBD calculation with
other phased (nonsequenced) individuals in the Hutterite
pedigree. We prioritize this process by first searching for
an IBD match between the subject of interest and the se-
quenced/phased individual with whom the subject has the
highest kinship coefficient. If a high probability of IBD is
found both proximal and distal to the SNP of interest, we
are able to assign a haploid genotype to the nonsequenced
individual. As a result, some individuals will have a hap-
loid imputed genotype if an IBD match is found for only a
single chromosome.
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GENE-DROPPING SIMULATIONS
We used gene-dropping simulations to estimate the pro-

portion of each founder’s genome expected to be repre-
sented in the 25 exome-sequenced and the larger sample of
genotyped Hutterites. Each founder in the Hutterite pedi-
gree was seeded with a unique genotype at each of 1,000 in-
dependently segregating loci. Each unique allele was passed
to the descendants of each founder according to the rules
of Mendelian inheritance. This model accurately captures
the expected proportion of genetic material inherited by
each Hutterite from each founder individual under a neu-
tral model, but does not model recombination, selection, or
other genetic processes. At the conclusion of the simula-
tions, we measured the fraction of the alleles remaining in
the 1,414 individuals genotyped for the GWAS SNPs that
were also present among the 25 exome-sequenced individ-
uals.

RESULTS

ACCURACY AND COMPLETENESS OF
IMPUTED GENOTYPES

We first assessed the accuracy and completeness of
our imputation algorithm by masking the genotypes of
2,000 GWAS SNPs and phasing blind to these genotypes.
These SNPs were selected to match the minor allele fre-
quency spectrum of the variants in the 25 exome sequences
(Fig. S1). We then used the genotypes at these SNPs for
the 25 individuals in our exome sequencing study as in-
put to our imputation algorithm and imputed genotypes
to the remaining individuals with phased GWAS SNP
data. A summary of the haploid call rates is presented in
Figure 1A. The median haploid call rate per SNP was 77.2%
and the median diploid call rate was 60.9%. We also mea-
sured the proportion of genotypes that were phased among
all sites of a given allele frequency, as this will greatly in-
fluence the completeness of imputation. The proportion of

genotypes phased varies between 86% and 99% and gener-
ally decreases with increasing minor allele count (Fig. S3).
At singleton SNPs, 68% of heterozygous individuals were
phased.

To measure the accuracy of the algorithm, we computed
the squared Pearson correlation, R2 [Browning and Brown-
ing, 2009], between GWAS genotypes and imputed geno-
types for each of the 2,000 SNPs. The median R2 between
imputed genotypes and GWAS genotypes was greater than
0.99 for each minor allele frequency bin, but the mean for
singleton SNPs was 0.751. This reflects the sensitivity of
the method to the accuracy of the phasing of the single-
heterozygous individual at singleton SNPs (Fig. 1B). The
call rate was not strongly correlated with concordance rate
(Pearson’s correlation coefficient of 0.08).

As we have a complete and accurate 13-generation pedi-
gree of Hutterites in our studies, it is possible to apply sim-
ple Mendelian rules to estimate the percentage of original
genetic material from each founder that is present among
the 1,414 genotyped individuals. Furthermore, it is possible
to estimate the proportion of this variation that is present in
the 25 exome-sequenced individuals. Using pedigree-based
simulations of Mendelian inheritance, we found that there
is a 79% chance that any given founder variant that remains
among the 1,414 individuals (i.e., has not been eliminated
by drift) is also present among the 25 exome-sequenced in-
dividuals. This indicates that with perfect genotyping and
imputation, we would be able to impute to an average of
79% of the chromosomes among the 1,414 genotyped Hut-
terites. The median and mean haploid call rates for the 2,000
test SNPs were 77.2% and 70.8%, respectively, indicating
that our imputation algorithm provides near-optimal com-
pleteness of information for our reference panel.

EXOME SEQUENCING AND IMPUTATION OF
SEQUENCED VARIANTS

The 25 exome sequences revealed 12,134 novel vari-
ants and 35,596 previously annotated (dbSNP build 129)

Fig. 1. Accuracy and completeness of the imputation algorithm. The genotypes of 2,000 GWAS SNPs that matched the site-frequency
spectrum of the exome sequencing data were masked in the GWAS SNP dataset. We then performed our phasing algorithm in the
absence of these genotypes. Using this phase data and the genotypes of the same 25 Hutterites for whom whole-exome sequences are
available, we imputed genotypes for the 2,000 masked SNPs to the rest of the 1,414 person sample. (A) The median haploid call rate per
SNP was 77%, where call rate was calculated as N/2,828 (N = number of total genotypes imputed; 2,828 is the number of chromosomes
among the 1,414 GWAS SNP genotyped individuals). (B) Median and mean R2 for SNPs of varying allele frequencies. R2 is the Pearson’s
correlation coefficient between imputed genotypes and GWAS genotypes. Allele frequency bins are each 0.02 wide.
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Fig. 2. Site-frequency spectra of (A) novel vs. previously annotated SNPs and (B) nonsynonymous vs. synonymous SNPs that were
present in the exome sequencing study. Both nonsynonymous and novel variants are shifted to lower frequencies relative to syn-
onymous/previously annotated variants. Variants are included in the figure only if a diploid genotype call could be made in all 25
individuals.

variants after quality control. The site-frequency spectra
(SFS) of minor allele counts of both novel and annotated
variants and the SFS of nonsynonymous and synonymous
mutations are shown in Figure 2. Not surprisingly, the distri-
butions of novel and nonsynonymous alleles are shifted to
lower frequencies compared to annotated and synonymous
mutations, respectively. However, 70.4% of novel variants
are present at least twice in the 25 sequenced exomes, cor-
responding to a sample frequency at or above 4%. Because
these variants are not present in dbSNP 129, their allele fre-
quency among all European-derived samples is likely to be
much lower.

Using genotype calls at these sequenced variants as input
to our imputation algorithm, we phased and imputed geno-
types to the remaining individuals among the 1,414 geno-
typed for the GWAS SNPs. We performed a leave-one-out
cross validation to verify that these imputed genotypes had
similar accuracy and completeness profiles to the data pre-
sented in Figure 1. The accuracy as measured by Pearson’s
R2 was similar to the results presented in Figure 1, although
the completeness diminished slightly (median haploid call
rate of 72%, Fig. S2). This reduction in median call rate was
expected because of the reduction in sample size for the se-
quenced panel, and because the average kinship between
pairs of exome-sequenced individuals is lower than the
Hutterite population average. Finally, we selected three im-
puted SNPs that were candidates in other ongoing studies
for further study. Two of these SNPs are novel SNPs discov-
ered in the exome sequences. We independently genotyped
these three SNPs with Taqman R© assays (Applied Biosys-
tems, Carlsbad, CA). Concordance between Taqman geno-
types and imputed genotypes was above 99% for each SNP
(Table SI).

LD BETWEEN IMPUTED AND GWAS
VARIANTS

We measured the r2 value between each of the GWAS
SNPs and each of the imputed exome variants using every
available imputed diploid genotype. For each imputed SNP,
we computed the maximum r2 value with any GWAS SNP.
We report a cumulative distribution of maximum r2 values
for imputed SNPs in Figure 3. Forty percent of the imputed
SNPs have a maximum r2 less than 0.798, and 25% of the
SNPs have a maximum r2 of less than 0.610. Furthermore,
40% of novel SNPs have a maximum r2 of less than 0.642

and 25% of novel SNPs have a maximum r2 of less than
0.491. As a consequence, the evidence of association at the
many of the imputed SNPs may not be efficiently captured
by single-SNP analyses of the GWAS SNPs.

IMPUTATION WITH ADDITIONAL
SEQUENCING SUBJECTS

Lastly, we assessed the effect of larger samples of se-
quenced individuals on the accuracy and completeness of
our imputation algorithm using the same set of 2,000 test
SNPs discussed previously. In general, selecting the group
of individuals that will maximize the call rate of our impu-
tation algorithm is a difficult problem, so individuals were
selected as sequencing candidates with a greedy strategy
that provides good coverage. First, we selected the person
with the highest average kinship to the other 1,413 indi-
viduals in our study. We subsequently selected individuals
who had the highest average kinship to the remaining, uns-
elected individuals, but who have kinship not exceeding 0.1
with any other individual already selected for sequencing.
We composed two groups of individuals using this strategy,
with sample sizes of 48 and 96 individuals, the group of 48
being a subset of the group of 96. The median haploid call
rate for imputed SNPs in the larger sample of 1,414 individ-
uals was 88.1% when 48 individuals were sequenced, while
the median haploid call rate was 94.1% when 96 individu-
als were sequenced (Fig. 4). The median diploid call rates
improved to 78.9% and 89.5% for the 48 and 96 individual
groups, respectively. The mean R2 value improved at low
allele frequency relative to Figure 1 (mean R2 of 0.865 for 48
individuals, 0.875 for 96 individuals).

DISCUSSION

In this paper, we described a new method to impute geno-
types for variants discovered in a subset of individuals in
a founder population to other members of the population.
We demonstrated the high accuracy of the imputation al-
gorithm across the full range of allele frequencies, and then
assigned imputed genotypes at each variant site to a large
proportion of the chromosomes in the population. As pre-
dicted, many variants that are rare in European populations
occur at estimated frequencies of >4% in the Hutterites.
Although we were motivated by the hypothesis that rare
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Fig. 3. Linkage disequilibrium between GWAS SNPs and imputed SNPs. We measured pairwise LD between imputed and GWAS
SNPs. r2 values were computed between each GWAS SNP and each imputed SNP on each chromosome. Here, we plot the cumulative
distribution of maximum r2 values discovered for each imputed SNP with the GWAS SNPs. Overall, 40% of imputed SNPs have a
maximum r2 of less than 0.798 and 25% have a maximum r2 of less than 0.610, while 40% of novel SNPs have a maximum r2 of less than
0.642 and 25% have a maximum r2 of less than 0.491.

variation may contribute to risk for common diseases, our
algorithm is equally well suited to imputing and ultimately
investigating associations with common variants.

Our imputation method was designed to impute geno-
types in a founder population for future GWAS of common
diseases and quantitative phenotypes. As founder popula-
tions have less genetic diversity than nonfounder popula-
tions, with a preferential loss of rare alleles, it was previ-
ously unknown whether there was a significant amount of
variation in the Hutterites that is not tagged by the GWAS
SNPs. In fact, 25% of the novel variants discovered by ex-
ome sequencing have no corresponding GWAS SNP with
an r2 value of greater than 0.491. If any of these novel,
sequenced variants with low maximum r2 are disease- or
phenotype-associated SNPs, our power to detect these as-
sociations is greater with our method relative to a study
using only GWAS SNPs.

By sequencing only 25 Hutterite exomes, we were able to
impute variants to 77% of chromosomes among our larger
dataset of 1,414 individuals. Sequencing a larger number
of Hutterites will not only enhance our ability to discover
genetic variation that is present in the Hutterite pedigree,
but will also allow us to impute genotypes to a greater
proportion of the sample. For example, imputation of 2,000
GWAS SNPs that matched the allele frequency spectrum of
the exome data from a sample of 96 Hutterites garnered a
median haploid call rate of approximately 94% and diploid
call rate of 89.5% (Fig. 4).

An ultimate consideration is the effect of the imputation
coverage and accuracy on downstream association tests.
Because of the high accuracy we observe in our studies
(similar in magnitude to that of direct genotyping), we
believe that this could result in only a minor decrease in
power compared to directly genotyping the same subjects.
Coverage could have a higher impact, as nonrandom miss-
ing genotypes can lead to an inflation in type 1 error. This
bias can occur when the missing data patterns are corre-
lated with both the phenotype (subjects closer related to

the sequenced individuals have a different phenotype dis-
tribution than subjects further related) and with specific
alleles (such as the minor allele). In our studies, we ad-
dress this issue by testing for association between miss-
ing genotypes (coded as 0/1) and phenotype. The results
of these tests can be used to filter SNPs out of the anal-
ysis in the same way as it is done with deviations from
Hardy-Weinberg equilibrium. Note that a similar strategy
is used in classical GWAS—a significant difference in miss-
ing genotypes in cases and controls could flag SNPs during
the QC process. Thus, overall, we believe that biases intro-
duced by imputation can be assessed and directly addressed
by filtering imputed SNPs based on call rates or nonran-
dom missing genotypes, as we do for directly genotyped
SNPs.

Our approach to generating imputed genotypes is de-
pendent on phasing and accurate calculation of local IBD-
sharing relationships. In our study, we followed large scale
Affymetrix genotyping in a founder population with se-
quencing of a subset of these individuals. The quality of
phasing depends greatly on the pedigree (larger nuclear
families are easier to phase) and on the IBD-sharing infor-
mation (that allows the use of “surrogate parents”). The
IBD inference depends on the density and informative-
ness of the GWAS SNPs. The number of sequenced indi-
viduals affects the coverage of the pedigree (the imputed
SNP call rates), but it has little influence on the accuracy
of imputation. This is different than the approaches to im-
putation in nonfounder populations that commonly rely
on LD structure that is inferred from a reference panel
[Browning and Browning, 2009; Li et al., 2010; Marchini
et al., 2007; Stephens and Donnelly, 2003]. LD-based ap-
proaches are best suited to cases where fine scale recom-
binations can be accurately estimated from the reference
data. The accuracy of the imputation for these algorithms
depends greatly on the quality of the reference panel (the
number of subjects and the density and informativeness
of the SNPs in the reference panel), and on the local LD
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Fig. 4. Accuracy and completeness with additional subjects. We imputed genotypes for the same 2,000 SNPs shown in Figure 1, using the
genotypes at these SNPs for sets of 48 individuals (A and B) and 96 individuals (C and D) as input to our imputation algorithm. Median
haploid call rate improved to 94.1% for the group of 96 and 88.1% for the group of 48, whereas median diploid call rates improved to
89.5% and 78.9%, respectively. Accuracy, as reflected by the R2 value, is improved at low frequency relative to Figure 1 because it becomes
easier to phase low-frequency alleles as the number of reference individuals increases. Allele frequency bins are each 0.02 wide.

structure. Thus, even though the quality of the set of SNPs
(number and frequency spectrum) and of the reference
panel influence the performance for both groups of imputa-
tion methods, the two strategies take advantage of different
characteristics of the data. This suggests that, in the context
of a founder population, a combination of these strategies
can be constructed to further improve coverage and impu-
tation accuracy.

The genotypes generated by this study and future whole-
genome sequencing/imputation studies will be included in
GWAS of common diseases and disease-associated quan-
titative phenotypes in the Hutterites, which will allow di-
rect assessment of the effects of exonic (coding) variants
vs. noncoding variants on disease risk, including the subset
of variants that are rare in the general population but rel-
atively common in the Hutterites. The phased haplotypes
may shed further light on recombination events in the Hut-
terites [Coop et al., 2008] and facilitate studies of the origin
of Mendelian disease mutations in the Hutterites [Chong
et al., 2011].
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