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The recent explosive growth of human populations has pro-
duced an abundance of genetic variants with minor allele 
frequencies (MAFs) less than 1% (ref. 1). While many rare 

variants underlying Mendelian diseases have been found2, their 
role in complex disease is unknown3–8. Evolutionary models predict 
that the contribution of rare variants to complex disease is highly 
dependent on selection strength9,10 and that population growth can 
magnify their impact10–12. Recent methodological breakthroughs13,14 
have enabled researchers to jointly estimate the independent contri-
butions of low- and high-frequency alleles to complex traits, often 
demonstrating a large rare variant contribution probably driven by 
natural selection5,15–18. However, these studies excluded the rarest 
variants15 or included only well-imputed variants5. This is a prob-
lematic limitation given that some plausible evolutionary models 
predict that the largest contributions to phenotypic variance could 
be from the rarest variants9–11,19. Directly querying the role of all 
variants with large-scale sequencing and sensitive statistical tests 
has the potential to reveal important sources of missing heritability, 
inform strategies to increase the success rate of association studies 
and clarify how natural selection has shaped human phenotypes.

In this study, we develop, validate and apply an approach for 
inferring the relative phenotypic contributions of all variants, from 
singletons to high-frequency variants. We focus on the narrow-
sense heritability (h2) of gene expression because a growing body 
of literature suggests that genetic variants primarily affect disease 
by modifying gene regulatory programs20–23, and recent examina-
tions have identified significant rare variant effects on transcrip-
tion8. To characterize the genetic architecture of gene expression, 
we analyzed 360 unrelated individuals of European ancestry with 
paired whole-genome DNA24 and RNA25 sequencing (RNA-seq) of 
lymphoblastoid cell lines (LCLs). We evaluate the robustness of our 
approach to genotyping errors, read mapping errors, population 

structure, rare variant stratification and a wide range of possible 
genetic architectures.

Results
Building and testing our model. We developed a method to esti-
mate the effect of rare alleles on trait variance and validated our 
approach with an extensive set of simulations. Before analyzing 
real expression data, we performed a rigorous series of simulations 
to identify an approach for estimating heritability that is robust 
to possible confounding factors. In our simulations, we used real 
genotype data (all variants within 1 megabase (Mb) of the tran-
scription start or end sites of genes) and generated gene expression 
phenotypes across individuals while varying the number of causal 
variants contributing to the phenotype (from 1 to 1,000), the distri-
bution of effect sizes (including uniform, frequency-dependent and 
an evolutionary-based model) and the distribution of causal allele 
frequencies (ranging from predominantly rare to predominantly 
common; see Supplementary Note). In total, we simulated 440 dif-
ferent genotype–phenotype models that span the range of genetic 
architectures that are likely to underlie complex phenotypes such as 
gene expression, and analyzed each simulated dataset using multi-
ple distinct methods. These include fitting a linear mixed model via 
restricted maximum likelihood26,27 and Haseman–Elston regression, 
an alternative approach based on regressing phenotypic covariance 
on genotypic covariance26, which is more robust in small samples 
(see Supplementary Note).

Similar to previous work28, we found that for many simula-
tion settings, jointly analyzing all variants together can result in a 
substantial over- or underestimate of heritability (Fig. 1a; it shows 
results when true h2 = 0.2). One common solution is to partition sites 
by frequency5,15,29. We found that simply isolating rare (MAF ≤ 1%) 
from common variants using two partitions and performing joint 
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inference15 could improve the accuracy for most models. However, 
when there are many causal rare variants, the estimator remains 
upwardly biased. Partitioning alleles into five or more categories 
using MAF5 alleviates this problem. Notably, not only does the 
overall bias decrease as the number of MAF categories increases, 
but the bias for each MAF bin also decreases substantially across all 
models (see Fig. 1b–f and Supplementary Note). These simulations 
suggested that with our sample size, partitioning SNPs into 20 MAF 
bins resulted in the smallest bias in our estimate of total heritability 
(h2

total) and the smallest bias for each bin across all simulated param-
eters. (However, see the Supplementary Note for further discussion 
of models that can induce bias.) Notably, further partitioning can 
improve results even further (see Supplementary Note); however, 
variance will probably increase unless prior knowledge about causal 
variation exists.

When partitioning variants into multiple MAF bins, singletons 
are inevitably isolated into their own category. Intuitively, if some 
fraction of singletons are causal, then individuals with a higher 
singleton load will probably be phenotypic outliers. (Indeed, indi-
viduals with outlier expression patterns have been observed to have 
an enrichment of nearby rare variants8.) Therefore, it is reasonable 
to ask what contribution singletons make to patterning phenotypic 
variation across a population. We investigated the theoretical prop-
erties of heritability estimation from singleton variants and show 
analytically that when genotypic covariance is estimated using sin-
gletons alone, Haseman–Elston regression is equivalent to regress-
ing squared standardized phenotypes against singleton counts (see 
Supplementary Note).

A direct implication of our derivation is that Haseman–Elston 
regression is unbiased unless singletons have large nonzero mean 
effect sizes (violating an explicit assumption of standard linear mixed 

models), which are the only simulation scenarios where heritability 
estimates remain upwardly biased (Fig. 1a, blue points). We developed 
an alternative approach that produces unbiased estimates of both 
heritability and mean effect size in all examined cases. Intuitively, the 
Singleton Heritability inference with REML (SingHer) method con-
ditions on total singleton count (per cis window) to (1) appropriately 
estimate total cis heritability and (2) partition singleton heritability 
into directional and random components (see Supplementary Note). 
However, because Haseman–Elston regression is well understood 
and flexible, we recommend its use when mean effect sizes are near 
zero. For the data we analyze in this article, the SingHer method esti-
mated that mean effect sizes were near zero; therefore, we proceeded 
with Haseman–Elston regression.

Singletons drive the genetic architecture of gene expression. To 
characterize the genetic architecture of human gene regulation, 
we partitioned the heritability of gene expression into 20 MAF 
bins. We used n = 360 unrelated individuals of European descent 
with both RNA-seq data from the GEUVADIS25 project (Genetic 
European Variation in Disease—European Medical Sequencing 
Consortium) and whole-genome sequencing (WGS) data from 
the 1000 Genomes Project (1KGP)24. After extensive quality con-
trol to remove genes not expressed in LCLs, our dataset included 
10,203 autosomal genes (see Supplementary Note). For each gene, 
we extracted all variants within 1 Mb of the transcription start or 
end sites (corresponding to an average of 13,839 variants per gene; 
35.2% are singletons); we did not consider trans effects because of 
the small sample size (though we do analyze the effects of varying 
the window size in the Supplementary Note).

To control for possible non-normality, population structure 
and batch effects, we quantile-normalized expression values and 
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Fig. 1 | Simulation results. Across a broad range of parameters, the accuracy of heritability inference improves as the number of SNP bins (partitioned 
by MAF) increases. a, Mean bias of total heritability (inferred-true) for different numbers of SNP bins (K), where each point represents the mean of 500 
simulations for different parameters, and box plot summarizing the bias distribution across all parameters (indicating the median, upper and lower quartile 
and twice the interquartile range). b–f, Distribution of average bias across simulated parameters for each SNP bin, showing that both mean and variance of 
the bias decrease as K increases (n = 500 simulations in each plot).
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included the first ten principal components from both genetic and 
phenotypic data in all analyses; we present the average h2 estimate 
across genes in each MAF bin in Fig. 2a (blue curve). We found that 
h2 is highest for the first MAF bin (singletons). However, using a 
new trans permutation procedure, we detected evidence for residual 
population stratification in low-frequency (but not high-frequency) 
SNPs that could not be accounted for using principal components 
(pink curve; see Supplementary Note). Note that differential popu-
lation structure among common and rare variants is a documented, 
although understudied, phenomenon in human genetics30. We 
corrected for this population stratification bias by subtracting the 
permutation-based estimate from the raw principal component-
corrected h2 estimate, shown in purple and henceforth indicated as 
h2′. We found that the plurality of h2′ comes from singletons, but 
common variants also contribute a substantial amount toward h2′. 
Low- and intermediate-frequency SNPs make a minimal contribu-
tion to h2′. Note that this is a conservative correction because our 
trans permutations capture both the effect of stratification and true 
trans heritability.

Figure 2b shows the proportion of h2′ explained by each MAF bin, 
showing that singletons represent approximately 25% of the total h2′, 
dominating the estimates from other MAF bins. Based on popula-
tion genetic theory9,10,12,31, we hypothesized that purifying selection 
has constrained causal regulatory alleles to low frequency. To test 
this hypothesis, we sorted our singletons by their population MAF, 
as inferred from a large external database (gnomAD). We reasoned 
that some of the singletons in our dataset would be evolutionarily 
neutral and have an intermediate population frequency, whereas the 
most deleterious singletons would almost always be constrained to 
a low population frequency. Therefore, we partitioned the single-
tons observed in our data by their MAF observed in the Genome 
Aggregation Database (gnomAD) dataset (representing high-cover-
age WGS on > 15,000 individuals) and performed Haseman–Elston 
inference of h2′ across 20 singleton bins based on their MAF observed 
in gnomAD. (We also partitioned by functional predictions and  

evolutionary conservation; see Supplementary Note.) The inset 
in Fig. 2b shows that the vast majority (>90%) of singleton h2′ is  
derived from variants that have a gnomAD MAF < 0.01%. This is 
strong evidence that natural selection constrains alleles with the 
largest effects on gene regulation to very low frequency. Notably, we 
found that 31% of our singletons were not reported in gnomAD, but 
this subset of variants (indicated by an asterisk in Fig. 2b) nonethe-
less explains approximately 80% of h2′

singleton. We confirmed that the 
majority of this signal is derived from true-positive singletons by 
analyzing a subset of 58 individuals with high-coverage WGS and 
estimated that 88% of h2′

singleton is derived from variants that validate 
(Supplementary Note). Previous work has shown that additionally 
partitioning common variants by linkage disequilibrium resulted in 
minimal change after partitioning by MAF5.

Studies of heritability typically filter out rare variants5,15,32. We 
showed that removing any SNPs based on MAF has a direct impact 
on the estimate of heritability. Figure 2c shows the cumulative 
h2 inferred as a function of MAF for different minor allele count 
(MAC) thresholds (averaged over all genes). We found that add-
ing progressively rarer variants to the analysis resulted in a mono-
tonic increase in inferred heritability. Including all variants down 
to singletons (purple curve) increases ch20total

I
 by approximately 50% 

(ch20total ¼ 0:061
I

) compared to the case when only common variants 
(MAF ≥ 5%) are analyzed (brown curve, ch20common ¼ 0:04

I
), indicat-

ing that common variants cannot tag heritability from lower-fre-
quency variants (that is, ‘synthetic association’ tagging33 is minimal, 
although rare variants can tag some common variant heritability; see 
Supplementary Note). However, not all singletons contribute equally 
to heritability and pooling them together can deflate h2′ estimates 
(a ‘singleton linkage disequilibrium’ effect previously only reported 
for common variants5,28; see Supplementary Note). Partitioning 
singletons into 6 bins based on their observed MAF in gnomAD 
(red curve) increased our ch20total

I
 estimate to 0.082 and showed that 

nearly half of the total heritability (46.6%) is explained by the 27.6% 
of variants that are globally rare (with MAFgnomAD < 0.1%).
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Fig. 2 | Partitioning heritability. Rare variants dominate the genetic architecture of human gene expression. a, Average heritability estimates across 
genes, partitioned across MAF bins (h2′, purple) after correcting for population structure using PCA (blue) and eliminating residual rare variant structure 
identified using a trans permutation (pink). b, The proportion of heritability attributed to each MAF bin. Singletons represent approximately 25% of the 
total inferred heritability, the vast majority of which is due to variants that are extremely rare in the population (inset, partitioning singletons in our data by 
the MAF observed in gnomAD, n > 15 k; singletons not reported in gnomAD are indicated with an asterisk). c, Cumulative h2′ inferred as a function of MAF 
for different frequency filter thresholds (purple, green, blue, brown), and when singletons are partitioned by population MAF (based on gnomAD, red). 
Including all SNPs and partitioning singletons by population MAF (instead of observed MAF) results in a substantially increased level of h2′. d, Globally 
rare singletons represent 56% of all singletons, but contribute 92% of h2′

singleton. Rare indels and structural variants also have enriched contributions to 
heritability (2.8% of singletons but 7.8% of h2′

singleton). However, singletons inferred to derive from Neanderthal introgression or having gnomAD MAF ≥ 10−4 
make negligible contributions to h2′

singleton. In all cases, confidence intervals/envelopes are based on the 95% quantile range of 1,000 bootstrap simulations.
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Recent studies of gene expression variation in humans have 
suggested that one-quarter of Neanderthal-introgressed haplo-
types have cis-regulatory effects34 and that expression outliers are 
enriched for having nearby rare structural variants compared to 
nonoutliers8. However, the overall contribution of these classes of 
variants to expression variation had not been characterized. We 
performed Haseman–Elston regression on four disjoint categories 
of singletons (Neanderthal-introgressed, indels/structural variants, 
globally rare singletons and other singletons) and found that glob-
ally rare singletons (that is, singletons in our data that are also sin-
gletons across all 2,504 samples in the 1KGP24) contribute the vast 
majority (92%) of singleton heritability (Fig. 2d). Rare indels/struc-
tural variants also have an enriched contribution to gene expression 
variation (representing 2.8% of singletons, but 6.8% of h2

singleton), but 
Neanderthal-introgressed singletons and other singletons make a 
negligible contribution to h2′

singleton.

Genotype quality does not drive the inference of heritability. One 
possible confounding factor is the effect of genotyping error on 
heritability estimation35. If heritability is biased by genotyping error 
and genotyping error also varies as a function of MAF, there could 
be differential bias across frequency bins when analyzing real data. 
We simulated a range of genotyping error models and found that 
all investigated forms of genotyping error increased the variance of 
heritability estimation, but did not induce a detectable upward bias 
(Supplementary Note).

We also performed several analyses to examine the possible 
confounding effects in these data (Supplementary Note). First, 
we ranked singletons by their reported genotype likelihood as 
reported for the individual carrying the singleton allele in 1KGP24 
and partitioned them into four equal groups (quartiles). We then 
ran Haseman–Elston regression with these four groups of single-
tons (along with ten principal components). Notably, we found 
that only those singletons with high SNP quality contributed posi-
tively to our inference of heritability (see Supplementary Note). 
Second, since both DNA sequencing and RNA-seq are based on 
LCLs, it is conceivable that difficult-to-sequence regions of the 
genome could result in correlated errors that confound our infer-
ence. To test this, we restricted our analysis to regions of the genome  
passing the 1KGP strict mask24 and found that our inference of heri-
tability was unchanged. We further ranked genes based on the num-
ber of exon bases passing the strict mask and found no difference 
in the genetic architecture of genes having high versus low overlap 
with the strict mask (see Supplementary Note). Finally, a subset 
of n = 58 samples were sequenced at high coverage by Complete 
Genomics as part of the 1KGP24. We identified the singletons car-
ried by these individuals and partitioned them into four groups by 
cross-classifying them as being present or absent in the Complete 
Genomics or gnomAD datasets. Running Haseman–Elston regres-
sion on this subset of individuals shows that h2′

singleton is predomi-
nantly driven by singletons that replicate in the Complete Genomics 
data but are not reported in gnomAD (consistent with Fig. 2), and 
that singletons that are absent from Complete Genomics (and there-
fore more probably false positives) contribute negligibly to h2′

singleton 
(Supplementary Note).

Selection drives the genetic architecture of gene expression. We 
found that rare variants are a major source of heritability of gene 
expression, which we hypothesized was due to purifying selec-
tion constraining the frequencies of large-effect alleles. To test this 
hypothesis, we performed extensive simulations of human evolu-
tionary history36,37 and developed a method to infer the parameters 
of an evolutionary model for complex traits (see Supplementary 
Note). Our three-parameter phenotype model extends a previously 
described model of the pleiotropy of causal variation11—captured 
by ρ, where increasing values indicate higher correlations among 

expression effect sizes and the fitness effects acting on causal vari-
ants—and the scaling relationship between expression effect sizes 
and selection coefficients9 (τ, where increasing values indicate 
that the distribution of effect sizes has a longer tail toward strong 
effects), to include the overall strength of selection (ϕ), a mixture 
parameter between strong and weak selection distributions, where 
ϕ = 1 corresponds to strong selection. We inferred the approximate 
posterior distributions for each of these parameters using rejection 
sampling38, which compares a set of informative summary statistics 
from genetic data simulated under a model of European demog-
raphy39 and selection40,41 to the observed data (see Supplementary 
Note). Note that our inference procedure allows each parameter to 
vary across genes, but we only sought to infer the distribution of 
the average values of ρ, τ and ϕ across genes because we did not 
have the statistical power to infer ρ and τ for each gene. We rigor-
ously evaluated the performance of this inference procedure with 
simulations and found that we could infer ρ and τ with fairly high 
accuracy; however, ϕ (while broadly unbiased) is less informative 
(Supplementary Note).

Applying this model to our data, we found that purifying selec-
tion had a major impact on the genetic architecture of human gene 
expression and that a range of previously explored evolutionary 
models can plausibly explain the empirical data. In Fig. 3a, we plot-
ted the posterior distributions of the mean values of ϕ, ρ and τ. This 
suggested that, on average, the fitness effects acting on causal vari-
ants tend to follow the distribution inferred from conserved non-
coding loci �ϕ  0ð Þ

I
, but selection is pervasive in the sense that gene 

expression effect sizes are highly correlated with the fitness effects 
acting on causal variants. Figure 3b shows that our data are con-
sistent with a ridge of evolutionary scenarios that connect models 
where causal alleles are highly modular (for example, effect sizes 
are correlated with dampened fitness effects, as in the model of 
Eyre-Walker9, which assumes ρ = 1 with intermediate τ) and models 
with highly pleiotropic causal alleles and more extreme effect sizes 
(for example, the Simons et al.11 model, which assumes τ = 1, but a 
more moderate ρ). This observation could only be identified using 
our integrated model and suggests highly heterogeneous processes 
acting on individual genes. Our parameter inference suggests that 
while mean ρ, τ and ϕ can vary substantially among the best-fitting 
models, individual genes tend to have extreme values (that is, either 
0 or 1) for all three parameters (Fig. 3a). Figure 3c shows the cumu-
lative proportion of h2 as a function of MAF from 1,000 bootstrap 
draws from our posterior distribution, along with the cumulative 
proportion of h2′ inferred from our data. Compared to a neutral 
evolutionary model (pink), the posterior draws (gray, representing 
points along the ridge of evolutionary phenotype models show in 
Fig. 2b) are all highly concordant with our data.

Discussion
There is great interest in characterizing the genetic basis for com-
plex traits to improve our understanding of human health and dis-
ease and substantial resources are being spent to collect ever-larger 
cohorts to investigate the role of rare variants. Such studies will clar-
ify what we have learned from our relatively small study of just 360 
individuals. We developed, tested and applied a technique for inter-
rogating the role of rare variants in gene regulation using a relatively 
small cohort of n = 360 individuals who had whole-genome DNA 
sequencing and RNA-seq performed on their derived LCLs. We esti-
mated that the total narrow-sense heritability of LCL gene expres-
sion is approximately 8.2% and that the largest contributors to gene 
expression heritability are the rarest of variants in our data, that is, 
singletons where just one copy of the allele has been observed in our 
sample of 720 chromosomes (MAF = 0.0014). Globally rare variants 
(MAFgnomAD < 0.01%) explain approximately 90% of h2

singleton, imply-
ing that many of these causal variants would remain singletons even 
if tens of thousands more samples were sequenced and many more 
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singletons would be discovered. However, given that the plurality 
of variants is ultrarare, do we infer more heritability than would  
be expected given the fraction of variants observed at these fre-
quencies? In the Supplementary Note, we show that heritability  
enrichment is ‘U’-shaped as a function of MAF (on a logarithmic 
scale), suggesting that both rare and common alleles contribute 
more than twofold excess of heritability, while intermediate/low-
frequency variants (MAF = 0.1–5%) constitute a dearth of heri-
tability. This does not give us direct insight into the underlying 
distribution of regulatory effect sizes per causal variant, but it would 
be reasonable to speculate that the distribution of effect sizes for 
rare causal variants may be considerably larger (in absolute values) 
than common variants.

This excess of heritability due to ultrarare variants is best 
explained by pervasive purifying selection, where most cis-acting 
regulatory variants are deleterious. We inferred the parameters of 
an evolutionary model that are consistent with these data and found 
that for approximately two-thirds of genes, the effect sizes of cis-reg-
ulatory variants are highly correlated with how deleterious the fitness 
effects are on causal variants. Further, for the majority of genes, the 
fitness effects are more consistent with broadly defined conserved 
noncoding regions of the genome40 than the strongly selected non-
synonymous41 or ultraconserved regions of the genome42. However, 
while these parameters allow us to generate simulated data consis-
tent with our observations, they remain post hoc parametric mod-
els that do not necessarily represent a generative model of how the 
genetic architecture of cis-regulatory variation evolved, and do not 
incorporate potentially important contributions from other modes 
of natural selection (such as positive or balancing selection, which 
may be rare but can have substantial impact on gene expression 
when they act43).

Our estimate of total cis heritability is slightly larger than the pre-
vious estimates of h2

cis= 0.057 and 0.055 in blood and adipose tissue, 
respectively44, but lower than recent twin-based estimates of overall 
narrow-sense heritability h2 = 0.26, 0.21 and 0.16 in adipose tissue, 
LCLs and skin, respectively45 as well overall broad-sense heritabil-
ity H2 = 0.38 and 0.32 for LCLs and whole blood46. Therefore, it is 
plausible that rare variants account for some ‘missing heritability’ in 
human gene expression; however, differences in population, tissue 
and/or technology could also explain some of these patterns and 
there could also be differences between the genetic architecture of 
cis and trans regulation.

A concurrent examination of rare variant heritability via an 
allele-specific expression approach47 reported a lower, yet sub-
stantial contribution to heritability from rare variation. However, 
there are fundamental differences between our analyses that prob-
ably contribute to the difference in estimates. First, the work by 

Glassberg et al.47 examined a much narrower window around genes. 
This leads to differences if selection has acted differently in promot-
ers compared to more distal regulatory regions48 (Supplementary 
Note). Second, their work used a smaller sample size; thus, their 
definition of rare is less stringent than ours. Finally, they did not 
reclassify rare variants according to external reference panels, which 
greatly increased our estimates of rare variant heritability.

While it might at first seem logical to genotype some (or all) of 
these singletons in a larger panel of individuals to statistically iden-
tify the causal ones, our analysis uncovered a major challenge with 
this approach. Our results can only be explained if the causal alleles 
driving heritability are evolutionarily deleterious, with effect sizes 
often scaling with the strength of selection acting on them. This 
means that the alleles that have the greatest impact on gene expres-
sion are probably extremely rare in the broader population and are 
unlikely to exist in more than a few unrelated individuals in any 
given population. Indeed, our analysis shows that 90% of the single-
ton heritability is derived from alleles that are either not reported 
or have a MAF < 0.01% in the n > 15,000 samples in gnomAD. 
Therefore, we conclude that identifying causal alleles for transcrip-
tional variation probably requires the incorporation of new biologi-
cal information, possibly including large-scale experimental testing 
of singleton variants to improve functional predictions.

As the number of samples with detailed phenotype data and 
WGS data increases, it will be possible to apply the approach we have 
developed in the present study to characterize the genetic architec-
ture of additional complex traits. Indeed, in a recent WGS study of 
height and body mass index, we found that rare variants comprise 
essentially the entirety of ‘missing heritability’ for these traits49. By 
integrating such methods with functional genomic data, we may also 
learn more about the biology of causal variants, which could enable 
improved identification of clinically actionable variants in some 
cases. However, it is not clear that risk prediction from genomic data 
for most diseases will be feasible for otherwise healthy individuals 
with limited family history information. Population genetic theory 
tells us that rare variants only contribute a substantial source of 
heritability when causal alleles are evolutionarily deleterious. But 
the biology of human health and disease is complex. While not all 
human diseases themselves impart a strong fitness effect, extensive 
pleiotropy resulting from tightly interconnected networks of inter-
acting proteins experiencing cell-specific regulatory mechanisms 
could. Indeed, under the omnigenic model of disease, variants that 
affect any one of these components could contribute to an individu-
al’s risk for any disease involving any downstream pathway23.

We developed an approach to examine the heritability of single-
ton variants and the results have important implications for future 
genetic studies. We rigorously evaluated the performance of our 
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Fig. 3 | Pervasive purifying selection drives the genetic architecture of gene expression. Our model infers the strength of purifying selection acting on 
causal variants (ϕ), the correlation between the fitness and the effect size of causal variants (ρ) and a scaling factor that transforms fitness into effect 
sizes (τ). a, The posterior distribution of the mean of each parameter across genes (curves) and a histogram of the posterior parameter estimates for each 
gene. b, The joint posterior distribution of the average ρ and τ across genes shows an evolutionary trade-off between the correlation and scaling of fitness 
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inference procedure using extensive simulations and multiple types 
of permutations (see Supplementary Note). While we employed 
several approaches to test for the presence of confounders from 
population structure, genotyping/mapping error and cell line arti-
facts, there may be other unknown confounders that have biased the 
results of this study. We conservatively used quantile normalization 
on the expression phenotypes to enforce normality and this often 
reduces the overall heritability estimates (see Supplementary Note) 
by diminishing the impact of outliers8,50. There are several other 
contributors to broad-sense heritability that we have not attempted 
to model; they may also account for some of the heritability esti-
mated in family-based studies, such as gene–gene interactions, 
gene–environment interactions and other nonadditive components.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41588-019-0487-7.
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Methods
The full methodological details can be found in the Supplementary Note 
accompanying this manuscript (along with the simulation results, testing 
robustness of model assumptions and evolutionary modeling). In this article, we 
provide details of the primary methods used for data analysis.

Frequency-binned Haseman–Elston regression. Given genotypes at M SNPs 
over N individuals we considered additive phenotypic models such that the 
phenotype of individual i is: yi ¼

PM
j¼1 gijβj þ ϵi; ϵi  N 0; σ2e

� 

I
, where gij is the 

genotype of individual i at SNP j, βj is the effect size of SNP j and ϵi
I

 is the residual, 
independent and identically distributed, normally distributed noise of individual i. 
We partitioned the SNPs into K disjoint sets determined by the MAF of each SNP 
(or some other characteristic indicated in the text) and estimated the contribution 
of SNPs in the kth set to the heritability of y: h2k ¼ σ2k=σ

2
y

I
, where σ2k

I
 is the genetic 

variance contributed by all of the SNPs in the kth partition, σ2g ¼
PK

k¼1 σ
2
k

I
 is the 

total genetic variance and σ2y ¼ σ2g þ σ2e
I

 is the total phenotypic variance, assumed 
to be equal to 1 going forward.

To infer the heritability of gene expression levels across individuals, we 
primarily relied on Haseman–Elston regression26. The premise of Haseman–
Elston regression is that heritability can be estimated by the correlation between 
the phenotypic covariance across individuals and the genotypic covariance 
across individuals. In practice, for a single gene, we estimate the phenotypic 
covariance (P) as the upper triangle of the outer product of quantile-normalized 
log2(fragments per kilobase of transcript per million mapped reads) across our 
sample. For each of the K partitions, we estimated genotypic covariance with the 
upper triangle of a kinship matrix generated from all SNPs in the partition. Given 
a standardized genotype matrix of SNPs in the kth partition (Gk, with N rows and 
Mk columns, where each column has mean 0 and unit variance), the kth kinship 
matrix is Rk = GkGk′/Mk. Haseman–Elston regression is then performed using the 
lm() function in R:

P  R1 þ ¼ þ RK

Specifically, the regression is ordinary least squares applied to the (vectorized) 
strict upper triangles of these matrices, which, for N individuals, has N

2

� �

I

 
elements. In Haseman–Elston regression, with scaled and centered genotypes 
and phenotypes, the effect size for the kth term represents the genetic variance 
explained by the kth SNP partition βk ¼ σ2k

� �

I
, with the total genetic variance 

explained by all SNPs given by σ2g ¼
PK

k¼1 σ
2
k

I
. In the absence of other genetic 

contributions to phenotypic variation, heritability is equal to the total additive 
genetic variance explained by SNPs, h2 ¼ σ2g

I
. Therefore, in most instances in this 

article we simply refer to the genetic variance explained as heritability.
In general, we included the first ten principal components generated from 

our genome-wide genotype matrix as well as the first ten principal components 
generated from our transcriptome-wide expression matrix (described later). 
We show in our Supplementary Note that the number of principal components 
included does not qualitatively impact our results. Formally, we include the jth 
principal component (or an arbitrary numerical covariate) by adding the upper 
triangle of the principal component (or covariate) outer product with itself to our 
symbolic regression equation outlined earlier. Our results suggest that inclusion 
of principal components and other covariates did not completely account for 
population structure, especially in the low-frequency bins. Therefore, we relied 
on a trans sampling approach (see Supplementary Note) to account for residual 
population structure. Importantly, these results suggest that other investigations 
into rare variant heritability may not be completely accounting for population 
structure by simply including principal component covariates.

GEUVADIS dataset and quality control. RNA-seq gene expression data were 
downloaded from http://www.internationalgenome.org/data-portal/data-
collection/geuvadis. This dataset contains 375 individuals of European descent 
from 4 locations. Each of these individuals are contained in the 1KGP and genome 
sequence data were downloaded from www.1000genomes.org (ref. 24).

The GEUVADIS data consists of RNA-seq data for 464 LCL samples from 
5 populations in the 1KGP. Of these, 375 are of European ancestry (CEU, FIN, 
GBR, TSI) and 89 are of African ancestry (YRI). In these analyses, we considered 
only the European ancestry samples. Some individuals were previously identified 
as having cryptic relatedness by the 1KGP24 using identity by state analyses and 
were therefore pruned. Our resulting dataset contains 360 unrelated individuals 
of European descent from 4 populations. Raw RNA-seq reads obtained from 
the European Nucleotide Archive (www.ebi.ac.uk/ena) were aligned to the 
transcriptome using University of California Santa Cruz annotations matching 
hg19 coordinates. RNA-seq by expectation-maximization51 was used to  
estimate the abundances of each annotated isoform; total gene abundance was 
calculated as the sum of all isoform abundances normalized to one million total 
counts or transcripts per million. For each population, one million total counts 
or transcripts per million were log2-transformed and median normalized to 
account for differences in sequencing depth in each sample. The genotype data was 
obtained from the 1KGP phase 3 V5 dataset24. To remove potential confounders, 

such as population structure and batch effects, we performed principal component 
analysis (PCA).

PCA analyses. PCA was performed on both genome-wide genotype data and 
transcriptome-wide expression data. We obtained expression principal components 
from http://www.internationalgenome.org/data-portal/data-collection/geuvadis 
and ran PCA on the WGS data as follows.

1KGP phase 3 V5 variant call files. VCFtools v.0.1.14 (ref. 52) was used to filter 
out related individuals, exclude singletons sites, remove indels and filter out all 
nonbiallelic sites.

PLINK v.1.90b3x (ref. 53) was used to identify sites approximately in linkage 
equilibrium r2 < 0.2 examining 50 kb windows in 5 site increments, extract these 
sites and recode in an additive model (0, 1, 2).

R (https://www.r-project.org/) was used to concatenate chromosomes and run 
PCA on the centered and scaled genotype matrix.

We also ran PCA on the genotype data with a higher MAF filter (MAF ≥ 5%) 
and got highly correlated results. However, because our analysis is based on 
rare variants, we wanted to include signals of population structure that manifest 
primarily in rare variants, hence including all variants seen at least twice.

We then checked for residual population structure using permutations. We 
first applied the standard permutation style, whereby phenotypes are shuffled 
among individuals before running the Haseman–Elston regression. We found that 
this removed all signals in the data and gives bh2 ¼ 0

I
. We then developed another 

permutation, which we refer to as a trans permutation. In this case, we maintain 
the order of gene expression and genotypes among individuals, but we perform 
Haseman–Elston regression on the SNPs in a window around one gene with the 
expression values of a random autosomal gene (that is, a gene in trans). We show 
the results of this permutation in Fig. 1a and in several supplementary figures. 
We found some degree of residual population structure for rare variants, but not 
common variants (despite the fact that we included rare variants in our PCA 
analysis). The main caveat with this approach is that we are unable to distinguish 
population structure from pervasive true trans effects, but we argue that removing 
the residual bh2

I
 from the trans permutation is conservative.

Constructing bootstrap confidence intervals. In Fig. 2 and in the Supplementary 
Note, we compare heritability estimates in many ways. Our primary approach  
to estimating uncertainty was based on rigorous bootstrapping. Except where 
noted, all error bars (sometimes plotted as envelopes encompassing the mean)  
were calculated from the 95% interquartile range of 1,000 bootstrap samples.  
This is an appropriate method for estimating uncertainty in independent and 
identically distributed data, and has previously been shown to work well in far 
broader settings50. Further, bootstrapping is a statistically appropriate way to 
estimate uncertainty when analyzing functions of correlated parameter  
estimates, for example, when estimating total h2, which is the sum across 
h2 estimates per bin. These bootstrap intervals represent uncertainty in the 
across-gene average heritability estimates per category (indeed, the single-gene 
uncertainties are much larger) and retain any across-gene correlations that  
are present in the real data. Hence, our s.e.m. estimates naturally account for 
correlated expression.

Evolutionary modeling and parameter inference. We suppose that gene 
expression is evolutionarily optimized, such that mutations that affect gene 
expression levels are deleterious. While many different evolutionary models can 
encode this qualitative behavior, we chose a previously studied theoretical model 
that allows for variation in pleiotropy and selection strength across genes10.

We used rejection sampling to infer evolutionary parameters. Rejection 
sampling compares a set of informative summary statistics computed on the 
output of model-based simulations to observed genomic and phenotypic data. The 
simulations that generate summary statistics that are most similar to the observed 
data are retained and the parameter values from the retained simulations are used 
to generate a posterior distribution over the true parameter values. In the present 
study, we took the proportion of variance explained by alleles up to minor allele 
count x as summary statistics, for x in {1,2,5,10,20,60,120,180,240,360}. We focused 
on inferring the mean strength of selection (2Ns), the correlation between selection 
strength and effect size (ρ), the mean shape of the effect size distribution (τ) and 
the selection strength on cis-regulatory variants (ϕ, representing the proportion 
of regulatory variants under strong negative selection). We inferred the posterior 
distribution of the mean of each of these parameters across genes as opposed to 
the parameter values for individual genes because single-gene estimates proved too 
noisy to be reliably computed.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
RNA-seq gene expression data were downloaded from http://www.
internationalgenome.org/data-portal/data-collection/geuvadis. This dataset 
contains 375 individuals of European descent from 4 locations. Each of these 
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individuals are contained in the 1KGP and genome sequence data were 
downloaded from www.1000genomes.org (ref. 24).

Code availability
Three open source software tools are being made available as part of this study; 
all are available on GitHub: (1) HEh2.R—R code that performs all the Haseman–
Elston analyses and simulations discussed in this paper. It also implements the 
artificial intelligence algorithm for parameter inference of linear mixed models. It is 
available from https://github.com/hernrya/HEh2; (2) SingHer R package discussed 
in the Supplementary Note, with performance statistics and available from https://
github.com/andywdahl/SingHer; and (3) rejection sampling: scripts demonstrating 

how we used rejection sampling to infer parameters of the phenotype model are 
available from https://github.com/uricchio/HE_scripts.
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For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No data collection was performed for this analysis. No software were used for data collection.

Data analysis Three open source software tools are being made available as part of this study, all available on GitHub:  
HEh2.R – R code that performs all H-E analyses and simulations discussed in this paper. Also implements AI algorithm for parameter 
inference of LMM. Available here: https://github.com/hernrya/HEh2. Contact: Ryan Hernandez <ryan.hernandez@me.com>. For data 
analysis, we used version posted on April 25, 2019. 
 
SingHer R package – Singleton Heritability inference with REML, discussed in Section 2.4, with performance statistics in Table S2, and 
available here: https://github.com/andywdahl/SingHer. Contact: Andrew Dahl <andywdahl@gmail.com>, Noah Zaitlen 
<noahaz@gmail.com>. For data analysis, we used version posted August 28, 2018. 
 
Rejection sampling: Scripts demonstrating how we used rejection sampling to infer parameters of the phenotype model are available 
here https://github.com/uricchio/HE_scripts.  Contact: Lawrence Uricchio <uricchil@gmail.com>. For data analysis, we used version 
posted April 24, 2019.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All data are publicly available with no restrictions.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size 360 unrelated European individuals were available with deep RNA sequencing (through GEUVADIS) and whole genome sequencing (through 
1000 Genomes Project).

Data exclusions Related individuals can bias results, and therefore individuals with a relationship closer than 3rd cousin were removed. This decision was 
made prior to any analysis.

Replication There was no data collection, and therefore there were no steps taken to ensure reproducibility of experimental findings. To ensure reliability 
of our inference, we used an alternative subset of genotype data from high coverage whole genome sequencing.

Randomization We performed many analyses to dissect stratification. 

Blinding Our analysis is based on the inference of heritability of gene expression, as such knowledge of each individual's expression values and 
genotypes were essential, and therefore blinding was not possible.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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