
Introduction
Over long evolutionary timescales, weakly deleterious alleles can 
accumulate and ultimately fix due to genetic drift. Other 
evolutionary mechanisms could also contribute to the fixation of 
deleterious alleles, such as transient changes in the sign or 
strength of selection. Here, we use an evolutionary SIR model to 
examine how epidemics may alter deleterious allele frequencies 
and fixation rates when these alleles confer a transient fitness 
benefit, resulting in changes in selection strength and sign. The 
model suggests that weakly deleterious alleles can fix at elevated 
rates due to transient epidemics, but strongly conserved alleles 
should rarely (if ever) fix. To investigate the plausibility of the 
model, we compare patterns of substitutions in Viral Interacting 
Proteins (VIPs; Enard 2016) to non-VIPs. In particular, we compare 
rates of substitution in VIPs to non-VIPs as a function of predicted 
conservation strength (phyloP score). We find mixed support for 
the model in a preliminary analysis.

Research Goal
VIPs are more conserved than average proteins in the human 
genome, but also harbor evidence for higher-than-average 
adaptation rates (Enard 2016). Our research asks whether it is 
possible for transient selection pressures (epidemics) to result 
increased rates of substitution at conserved sites in VIPs. This 
research is part of a broader initiative to integrate ecological 
modeling into evolutionary methods for inferring adaptation rates.
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We use a classic SIR (Susceptible (S), Infectious (I), Recovered 
(R)) and add allele frequencies for a resistance allele. The 0,1, and 
2 superscripts represent the number of copies of a resistance allele 
carried by an individual. D represents the number of individuals that 
have succumbed to the epidemic. Given the change in frequency of 
the allele, we can calculate its expected fixation probability.
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S0(t)+S1(t)+S2(t)+I0(t)+I1(t)+I2(t)+R0(t)+R1(t)+R2(t) + D(t) = N

We analyzed a previously published set of VIPs, substitutions 
along the human branch since our divergence from 
chimpanzees (Enard 2016), and a predicted measure of 
conservation (phyloP scores; Pollard 2010). We compared 
relative rates of substitution at VIPs to non-VIPs as a function of 
conservation strength, with negative phyloP representing 
non-conserved sites and positive phyloP representing 
conserved sites. Figure 2 (below) describes the dataset. VIPs 
are slightly more conserved than non-VIPs. 

Figure 1: Predicted change in distribution of deleterious allele frequencies in a 
population after an epidemic beginning at Time = 0.

Our preliminary analysis aligns with previous work suggesting 
that VIPs are highly conserved. However, along the human 
lineage they have an excess of substitutions relative to non-VIPs 
at all but the most conserved sites. This is somewhat consistent 
with our model, which suggests that density-dependent 
pathogens can cause an increase in substitution rate at all but the 
most strongly conserved sites.

Our analyses are preliminary, and further work must be done to 
account for potential differences in mutation rates between VIPs 
and non-VIPs, to account for functional predictions 
(nonsynonymous vs synonymous sites), and differentiate 
between different viruses that interact with VIPs.  We hope to 
integrate the substitution patterns predicted by the SIR model to 
demonstrate how the epidemics may have influenced substitution 
rates in VIPs, and therefore deleterious allele frequency changes 
in human populations. 

Figure 2: Number of VIPs per chromosome (A), number of substitutions in VIPs 
and non-VIPs per chromosome (B), and distribution of phyloP (chr13 and Y as 
representative chromosomes; C).
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Figure 3: Relative number of substitutions in VIPs (DVIP) as compared to 
non-VIPs (DnVIP) as a function of phyloP. More conserved sites are not enriched 
for substitutions in VIPs, while moderately conserved sites and non-conserved 
sites have an excess of substitutions in VIPs.


